Materialization forced in case if rand() used in view or derived table to avoud several calls of rand for gting value of a field.
Fixed set variable uncachable flag from - it shouldbe a side effect not a random value.
- YYPARSE_PARAM and YYLEX_PARAM are removed in Bison 3.0. Deprecated
since Bison 1.875 in favor of %lex-param, %parse-param.
- %parse-param adds an argument to yyerror() as well, updated
MYSQLerror() accordingly.
- %parse-param allows to declare proper type for argument. That's
what 99% of this patch is about.
LOAD DATA CAN CAUSE SQL INJECTION
Problem:
=======
A long SET expression in LOAD DATA is incorrectly truncated
when written to the binary log.
Analysis:
========
LOAD DATA statements are reconstructed once again before
they are written to the binary log. When SET clauses are
specified as part of LOAD DATA statement, these SET clause
user command strings need to be stored as it is inorder to
reconstruct the original user command. At present these
strings are stored as part of SET clause item tree's
top most Item node's name itself which is incorrect. As an
Item::name can be of MAX_ALIAS_NAME (256) size. Hence the
name will get truncated to "255".
Because of this the rewritten LOAD DATA statement will be
terminated incorrectly. When this statment is read back by
the mysqlbinlog tool it reads a starting single quote and
continuos to read till it finds an ending quote. Hence any
statement written post ending quote will be considered as
a new statement.
Fix:
===
As name field has length restriction the string value
should not be stored in Item::name. A new String list is
maintained to store the SET expression values and this list
is read during reconstrution.
sql/sql_lex.cc:
Clear the load data set string list during each query
execution.
sql/sql_lex.h:
Added a new String list to store the load data operation's
SET clause user command strings.
sql/sql_load.cc:
Read the SET clause user command strings from load data
set string list.
sql/sql_yacc.yy:
Store the SET caluse user command string as part of load
data set string list.
MDEV-4489 "Replication of big5, cp932, gbk, sjis strings makes wrong values on slave"
has been fixed.
Problem:
String constants of some Asian charsets (big5,cp932,gbk,sjis)
can have backslash '\' (0x5C) in the second byte of multi-byte characters.
Replicating of such constants using the standard '\'-escaping is dangerous.
Therefore, constants of these charsets are replicated using hex notation:
INSERT INTO t1 (a) VALUES (0x815C);
However, 0xHHHH constants do not work well in some cases,
because they can behave as strings and as numbers, depending on context
(for example, depending on the data type of the column in an INSERT statement).
This SQL script was not replicated correctly with statement-based replication:
SET NAMES gbk;
PREPARE STMT FROM 'INSERT INTO t1 (a) VALUES (?)';
SET @a = '1';
EXECUTE STMT USING @a;
The INSERT statement was replicated as:
INSERT INTO t1 (a) VALUES (0x31);
'1' was correctly converted to the number 1 on master.
But the 0x31 constant was treated as number 49 on slave.
Fix:
1. Binary log now uses X'HHHH' instead of 0xHHHH constants.
2. The X'HHHH' constants now work always as strings, in all contexts.
This is the SQL standard compliant behaviour.
After the fix, the above statement is replicated as:
INSERT INTO t1 (a) VALUES (X'31');
X'31' is treated as string '1' on slave, and is correctly converted to 1.
modified:
@ mysql-test/r/ctype_cp932_binlog_stm.result
@ mysql-test/r/select.result
@ mysql-test/r/select_jcl6.result
@ mysql-test/r/select_pkeycache.result
@ mysql-test/r/user_var-binlog.result
@ mysql-test/r/varbinary.result
@ mysql-test/suite/binlog/r/binlog_stm_ctype_ucs.result
@ mysql-test/suite/binlog/r/binlog_stm_mix_innodb_myisam.result
@ mysql-test/suite/rpl/r/rpl_charset_sjis.result
@ mysql-test/suite/rpl/r/rpl_mdev382.result
@ mysql-test/suite/rpl/t/rpl_charset_sjis.test
@ mysql-test/t/ctype_cp932_binlog_stm.test
@ mysql-test/t/select.test
@ mysql-test/t/varbinary.test
Adding and updating tests
@ sql/item.cc
@ sql/item.h
@ sql/sql_yacc.yy
@ sql/sql_lex.cc
Splitting the implementations of X'HH' and 0xHH constants into two
separate classes. Fixing the parser to distinguish the two syntaxes.
@ sql/log_event.cc
Using X'HH' instead of 0xHH for binary logging for string constants
of the "dangerous" charsets.
@ sql/sql_string.h
Adding a helped method String::append_hex().
!TABLES->NEXT_NAME_RESOLUTION_TABLE) || !TAB
Problem:
The context info of select query gets corrupted when a query
with group_concat having order by is present in an order by
clause of the select query. As a result, server crashes with
an assert.
Analysis:
While parsing order by for group_concat, it is presumed that
it is always present before the actual order by for the
select query.
As a result, parser uses select->order_list to populate the
order by items of group_concat and creates a select->gorder_list
to which select->order_list is copied onto. Once this is done,
it empties the select->order_list.
In the case presented in the bugpage, as order by is already
parsed when group_concat's order by is encountered, parser
presumes that it is the second order by in the select query
and creates fake_lex_unit which results in the change of
context info.
Solution:
Make group_concat's order by parsing independent of the select
sql/item_sum.cc:
Change the argument as, select->gorder_list is not pointer anymore
sql/item_sum.h:
Change the argument as, select->gorder_list is not pointer anymore
sql/mysql_priv.h:
Parsing for group_concat's order by is made independent.
As a result, add_order_to_list cannot be used anymore.
sql/sql_lex.cc:
Parsing for group_concat's order by is made independent.
As a result, add_order_to_list cannot be used anymore.
sql/sql_lex.h:
Parsing for group_concat's order by is made independent.
As a result, add_order_to_list cannot be used anymore.
sql/sql_yacc.yy:
Make group_concat's order by parsing independent of the select
queries order by.
Post push fix:
setup_ref_array() now uses n_sum_items to determine size of ref_pointer_array.
The problem was that n_sum_items kept growing, it wasn't reset for each query.
A similar memory leak was fixed with the patch for:
Bug 14683676 ENDLESS MEMORY CONSUMPTION IN SETUP_REF_ARRAY WITH MAX IN SUBQUERY
sql/sql_yacc.yy:
Reset parsing_place when we're done parsing SHOW commands,
to prevent Item::Item incrementing select_n_having_items
(which is also used in setup_ref_array())
n_child_sum_items kept increasing.
Since it is used for calculating the size of ref_pointer_array,
we will allocate larger and larger chunks of memory, until we hit some
operating system limit.
The memory is free()d at disconnect, but is most likely *not*
returned to the operating system.
two tests still fail:
main.innodb_icp and main.range_vs_index_merge_innodb
call records_in_range() with both range ends being open
(which triggers an assert)
Analysis:
The fix for lp:944706 introduces early subquery optimization.
While a subquery is being optimized some of its predicates may be
removed. In the test case, the EXISTS subquery is constant, and is
evaluated to TRUE. As a result the whole OR is TRUE, and thus the
correlated condition "b = alias1.b" is optimized away. The subquery
becomes non-correlated.
The subquery cache is designed to work only for correlated subqueries.
If constant subquery optimization is disallowed, then the constant
subquery is not evaluated, the subquery remains correlated, and its
execution is cached. As a result execution is fast.
However, when the constant subquery was optimized away, it was neither
cached by the subquery cache, nor it was cached by the internal subquery
caching. The latter was due to the fact that the subquery still appeared
as correlated to the subselect_XYZ_engine::exec methods, and they
re-executed the subquery on each call to Item_subselect::exec.
Solution:
The solution is to update the correlated status of the subquery after it has
been optimized. This status consists of:
- st_select_lex::is_correlated
- Item_subselect::is_correlated
- SELECT_LEX::uncacheable
- SELECT_LEX_UNIT::uncacheable
The status is updated by st_select_lex::update_correlated_cache(), and its
caller st_select_lex::optimize_unflattened_subqueries. The solution relies
on the fact that the optimizer already called
st_select_lex::update_used_tables() for each subquery. This allows to
efficiently update the correlated status of each subquery without walking
the whole subquery tree.
Notice that his patch is an improvement over MySQL 5.6 and older, where
subqueries are not pre-optimized, and the above analysis is not possible.
The patch enables back constant subquery execution during
query optimization after it was disabled during the development
of MWL#89 (cost-based choice of IN-TO-EXISTS vs MATERIALIZATION).
The main idea is that constant subqueries are allowed to be executed
during optimization if their execution is not expensive.
The approach is as follows:
- Constant subqueries are recursively optimized in the beginning of
JOIN::optimize of the outer query. This is done by the new method
JOIN::optimize_constant_subqueries(). This is done so that the cost
of executing these queries can be estimated.
- Optimization of the outer query proceeds normally. During this phase
the optimizer may request execution of non-expensive constant subqueries.
Each place where the optimizer may potentially execute an expensive
expression is guarded with the predicate Item::is_expensive().
- The implementation of Item_subselect::is_expensive has been extended
to use the number of examined rows (estimated by the optimizer) as a
way to determine whether the subquery is expensive or not.
- The new system variable "expensive_subquery_limit" controls how many
examined rows are considered to be not expensive. The default is 100.
In addition, multiple changes were needed to make this solution work
in the light of the changes made by MWL#89. These changes were needed
to fix various crashes and wrong results, and legacy bugs discovered
during development.
Analysis:
The reason for the wrong result is the interaction between constant
optimization (in this case 1-row table) and subquery optimization.
- First the outer query is optimized, and 'make_join_statistics' finds that
table t2 has one row, reads that row, and marks the whole table as constant.
This also means that all fields of t2 are constant.
- Next, we optimize the subquery in the end of the outer 'make_join_statistics'.
The field 'f2' is considered constant, with value '3'. The subquery predicate
is rewritten as the constant TRUE.
- The outer query execution detects early that the whole query result is empty
and calls 'return_zero_rows'. Since the query is with implicit grouping, we
have to produce one row with special values for the aggregates (depending on
each aggregate function), and NULL values for all non-aggregate fields. This
function calls 'no_rows_in_result' to set each aggregate function to the
default value when it aggregates over an empty result, and then calls
'send_data', which in turn evaluates each Item in the SELECT list.
- When evaluation reaches the subquery predicate, it executes the subquery
with field 'f2' having a constant value '3', and the subquery produces the
incorrect result '7'.
Solution:
Implement Item::no_rows_in_result for all subquery predicates. In order to
make this work, it is also needed to make all val_* methods of all subquery
predicates respect the Item_subselect::forced_const flag. Otherwise subqueries
are executed anyways, and override the default value set by no_rows_in_result
with whatever result is produced from the subquery evaluation.
Description: When the table has more than one unique or primary key,
INSERT... ON DUP KEY UPDATE statement is sensitive to the order in which
the storage engines checks the keys. Depending on this order, the storage
engine may determine different rows to mysql, and hence mysql can update
different rows on master and slave.
Solution: We mark INSERT...ON DUP KEY UPDATE on a table with more than on unique
key as unsafe therefore the event will be logged in row format if it is available
(ROW/MIXED). If only STATEMENT format is available, a warning will be thrown.
mysql-test/suite/binlog/r/binlog_unsafe.result:
Updated result file
mysql-test/suite/binlog/t/binlog_unsafe.test:
Added test to check for warning being thrown when the unsafe statement is executed
mysql-test/suite/rpl/r/rpl_known_bugs_detection.result:
Updated result file
sql/share/errmsg-utf8.txt:
Added new warning message
sql/sql_base.cc:
check for tables in the query with more than one UNIQUE KEY and INSERT ON DUPLICATE KEY UPDATE, and mark such statements unsafe.
Background:
- as described in MySQL Internals Prepared Stored
(http://forge.mysql.com/wiki/MySQL_Internals_Prepared_Stored),
the Optimizer sometimes does destructive changes to the parsed
LEX-object (Item-tree), which makes it impossible to re-use
that tree for PS/SP re-execution.
- in order to be able to re-use the Item-tree, the destructive
changes are remembered and rolled back after the statement execution.
The problem, discovered by this bug, was that the objects representing
GROUP-BY clause did not restored after query execution. So, the GROUP-BY
part of the statement could not be properly re-initialized for re-execution
after destructive changes.
Those objects do not take part in the Item-tree, so they can not be saved
using the approach for Item-tree.
The fix is as follows:
- introduce a new array in st_select_lex to store the original
ORDER pointers, representing the GROUP-BY clause;
- Initialize this array in fix_prepare_information().
- restore the list of GROUP-BY items in reinit_stmt_before_use().
mysql-test/suite/innodb/t/group_commit_crash.test:
remove autoincrement to avoid rbr being used for insert ... select
mysql-test/suite/innodb/t/group_commit_crash_no_optimize_thread.test:
remove autoincrement to avoid rbr being used for insert ... select
mysys/my_addr_resolve.c:
a pointer to a buffer is returned to the caller -> the buffer cannot be on the stack
mysys/stacktrace.c:
my_vsnprintf() is ok here, in 5.5
https://mariadb.atlassian.net/browse/MDEV-28
This task implements a new clause LIMIT ROWS EXAMINED <num>
as an extention to the ANSI LIMIT clause. This extension
allows to limit the number of rows and/or keys a query
would access (read and/or write) during query execution.