When high priority replication slave applier encounters lock conflict in innodb,
it will force the conflicting lock holder transaction (victim) to rollback.
This is a must in multi-master sychronous replication model to avoid cluster lock-up.
This high priority victim abort (aka "brute force" (BF) abort), is started
from innodb lock manager while holding the victim's transaction's (trx) mutex.
Depending on the execution state of the victim transaction, it may happen that the
BF abort will call for THD::awake() to wake up the victim transaction for the rollback.
Now, if BF abort requires THD::awake() to be called, then the applier thread executed
locking protocol of: victim trx mutex -> victim THD::LOCK_thd_data
If, at the same time another DBMS super user issues KILL command to abort the same victim,
it will execute locking protocol of: victim THD::LOCK_thd_data -> victim trx mutex.
These two locking protocol acquire mutexes in opposite order, hence unresolvable mutex locking
deadlock may occur.
The fix in this commit adds THD::wsrep_aborter flag to synchronize who can kill the victim
This flag is set both when BF is called for from innodb and by KILL command.
Either path of victim killing will bail out if victim's wsrep_killed is already
set to avoid mutex conflicts with the other aborter execution. THD::wsrep_aborter
records the aborter THD's ID. This is needed to preserve the right to kill
the victim from different locations for the same aborter thread.
It is also good error logging, to see who is reponsible for the abort.
A new test case was added in galera.galera_bf_kill_debug.test for scenario where
wsrep applier thread and manual KILL command try to kill same idle victim
accept might return an error, including SOCKET_EAGAIN/
SOCKET_EINTR. The caller, usually handle_connections_sockets
can these however and invalid file descriptor isn't something
to call fcntl on.
Thanks to Etienne Guesnet (ATOS) for diagnosis,
sample patch description and testing.
Fix WolfSSL build:
- Do not build with TLSv1.0,it stopped working,at least with SChannel client
- Disable a test that depends on TLSv1.0
- define FP_MAX_BITS always, to fix 32bit builds.
- Increase MAX_AES_CTX_SIZE, to fix build on Linux
The reason why we have wsrep_on() at all is that the macro WSREP(thd)
depends on the definition of THD, and that is intentionally an opaque
data type for InnoDB. So, we cannot avoid invoking wsrep_on(), but
we can evaluate the less expensive conditions thd && WSREP_ON before
calling the function.
Global_read_lock: Use WSREP_NNULL(thd) instead of wsrep_on(thd)
because we not only know the definition of THD but also that
the pointer is not null.
wsrep_open(): Use WSREP(thd) instead of wsrep_on(thd).
InnoDB: Replace thd && wsrep_on(thd) with wsrep_on(thd), now that
the condition has been merged to the definition of the macro
wsrep_on().
If the server is compiled WITH_WSREP=OFF, we should avoid evaluating
conditions on a global variable that is constant.
WSREP_ON_: Renamed from WSREP_ON. Defined only WITH_WSREP=ON.
WSREP_ON: Defined as unlikely(WSREP_ON_).
wsrep_on(): Defined as WSREP_ON && wsrep_service->wsrep_on_func().
The reason why we have wsrep_on() at all is that the macro WSREP(thd)
depends on the definition of THD, and that is intentionally an opaque
data type for InnoDB. So, we cannot avoid invoking wsrep_on(), but
we can evaluate the less expensive condition WSREP_ON before calling
the function.
Introduced a new wsrep_strict_ddl configuration variable in which
Galera checks storage engine of the effected table. If table is not
InnoDB (only storage engine currently fully supporting Galera
replication) DDL-statement will return error code:
ER_GALERA_REPLICATION_NOT_SUPPORTED
eng "DDL-statement is forbidden as table storage engine does not support Galera replication"
However, when wsrep_replicate_myisam=ON we allow DDL-statements to
MyISAM tables. If effected table is allowed storage engine Galera
will run normal TOI.
This new setting should be for now set globally on all
nodes in a cluster. When this setting is set following DDL-clauses
accessing tables not supporting Galera replication are refused:
* CREATE TABLE (e.g. CREATE TABLE t1(a int) engine=Aria
* ALTER TABLE
* TRUNCATE TABLE
* CREATE VIEW
* CREATE TRIGGER
* CREATE INDEX
* DROP INDEX
* RENAME TABLE
* DROP TABLE
Statements on PROCEDURE, EVENT, FUNCTION are allowed as effected
tables are known only at execution. Furthermore, USER, ROLE, SERVER,
DATABASE statements are also allowed as they do not really have
effected table.
This is joint work with Thirunarayanan Balathandayuthapani.
The MDL interface between InnoDB and the rest of the server
(in storage/innobase/dict/dict0dict.cc and in include/)
is my work, while most everything else is Thiru's.
The collection of InnoDB persistent statistics and the
defragmentation were not refactored to use MDL. They will
keep relying on lower-level interlocking with
fil_check_pending_operations().
The purge of transaction history and the background operations on
fulltext indexes will use MDL. We will revert
commit 2c4844c9e7
(MDEV-17813) because thanks to MDL, purge cannot conflict
with DDL operations anymore. For a similar reason, we will remove
the MDEV-16222 test case from gcol.innodb_virtual_debug_purge.
Purge is essentially replacing all use of the global dict_sys.latch
with MDL. Purge will skip the undo log records for tables whose names
start with #sql-ib or #sql2. Theoretically, such tables might
be renamed back to visible table names if TRUNCATE fails to
create a new table, or the final rename in ALTER TABLE...ALGORITHM=COPY
fails. In that case, purge could permanently leave some garbage
in the table. Such garbage will be tolerated; the table would not
be considered corrupted.
To avoid repeated MDL releases and acquisitions,
trx_purge_attach_undo_recs() will sort undo log records by table_id,
and purge_node_t will keep the MDL and table handle open for multiple
successive undo log records.
get_purge_table(): A new accessor, used during the purge of
history for indexed virtual columns. This interface should ideally
not exist at all.
thd_mdl_context(): Accessor of THD::mdl_context.
Wrapped in a new thd_mdl_service.
dict_get_db_name_len(): Define inline.
dict_acquire_mdl_shared(): Acquire explicit shared MDL on a table name
if needed.
dict_table_open_on_id(): Return MDL_ticket, if requested.
dict_table_close(): Release MDL ticket, if requested.
dict_fts_index_syncing(), dict_index_t::index_fts_syncing: Remove.
row_drop_table_for_mysql() no longer needs to check these, because
MDL guarantees that a fulltext index sync will not be in progress
while MDL_EXCLUSIVE is protecting a DDL operation.
dict_table_t::parse_name(): Parse the table name for acquiring MDL.
purge_node_t::undo_recs: Change the type to std::list<trx_purge_rec_t*>
(different container, and storing also roll_ptr).
purge_node_t: Add mdl_ticket, last_table_id, purge_thd, mdl_hold_recs
for acquiring MDL and for keeping the table open across multiple
undo log records.
purge_vcol_info_t, row_purge_store_vsec_cur(), row_purge_restore_vsec_cur():
Remove. We will acquire the MDL earlier.
purge_sys_t::heap: Added, for reading undo log records.
fts_sync_during_ddl(): Invoked during ALGORITHM=INPLACE operations
to ensure that fts_sync_table() will not conflict with MDL_EXCLUSIVE.
Uses fts_t::sync_message for bookkeeping.
This patch contains two fixes:
* wsrep_handle_mdl_conflict(): handle the case where SR transaction
is in aborting state. Previously, a BF-BF conflict was reported, and
the process would abort.
* wsrep_thd_bf_abort(): do not restore thread vars after calling
wsrep_bf_abort(). Thread vars are already restored in wsrep-lib if
necessary. This also removes the assumption that the caller of
wsrep_thd_bf_abort() is the given bf_thd, which is not the case.
Also in this patch:
* Remove unnecessary check for active victim transaction in
wsrep_thd_bf_abort(): the exact same check is performed later in
wsrep_bf_abort().
* Make wsrep_thd_bf_abort() and wsrep_log_thd() const-correct.
* Change signature of wsrep_abort_thd() to take THD pointers instead
of void pointers.
Lock wait can happen on secondary index when doing FK checks for wsrep.
We should just return error to upper layer and applier will retry
operation when needed.
- Defining MariaDB_FUNCTION_PLUGIN
- Changing the code in /plugins/type_inet/ and /plugins/type_test/
to use MariaDB_FUNCTION_PLUGIN instead of MariaDB_FUNCTION_COLLECTION_PLUGIN.
- Changing maturity for the INET6 data type plugin from experimental to alpha.
* Collect and pass apply error data to provider
* Rollback failed transaction and continue operation if provider returns
SUCCESS
* MTR tests for inconsistency voting
This will allow to check ABI for C++ plugins defined in include/mysql/plugin.h
e.g. like this:
struct st_mysql_xxx
{
int interface_version;
const class XXX *xxx;
};
Discussed with Serg.
Many InnoDB internal variables and counters were only exposed
in an unstructured fashion via SHOW ENGINE INNODB STATUS.
Expose more variables via SHOW STATUS. Many of these were
exported in XtraDB.
Also, introduce SHOW_SIZE_T and use the proper size for
exporting the InnoDB variables.
Remove some unnecessary indirection via export_vars, and
bind some variables directly.
dict_sys_t::rough_size(): Replaces dict_sys_get_size()
and includes the hash table sizes.
This is based on a contribution by Tony Liu from ServiceNow.
Using different recommended speedup options for WolfSSL.
- Enable x64 assembly code on Intel.
- in my_crypt.cc, align EVP_CIPHER_CTX buffer, since some members need
alignment of 16 (for AESNI instructions), when assembler is enabled.
- Adjust MY_AES_CTX_SIZE
- Enable fastmath in wolfssl (large integer math).
- Add new submodule for WolfSSL
- Build and use wolfssl and wolfcrypt instead of yassl/taocrypt
- Use HAVE_WOLFSSL instead of HAVE_YASSL
- Increase MY_AES_CTX_SIZE, to avoid compile time asserts in my_crypt.cc
(sizeof(EVP_CIPHER_CTX) is larger on WolfSSL)