- Honor unsigned_flag in the corresponding functions
- Use compare_int_signed_unsigned()/compare_int_unsigned_signed() instead of explicit comparison in GREATEST() and LEAST()
equal constant under any circumstances.
In fact this substitution can be allowed if the field is
not of a type string or if the field reference serves as
an argument of a comparison predicate.
used.
Sorting by RAND() uses a temporary table in order to get a correct results.
User defined variable was set during filling the temporary table and later
on it is substituted for its value from the temporary table. Due to this
it contains the last value stored in the temporary table.
Now if the result_field is set for the Item_func_set_user_var object it
updates variable from the result_field value when being sent to a client.
The Item_func_set_user_var::check() now accepts a use_result_field
parameter. Depending on its value the result_field or the args[0] is used
to get current value.
When there is no index defined filesort is used to sort the result of a
query. If there is a function in the select list and the result set should be
ordered by it's value then this function will be evaluated twice. First time to
get the value of the sort key and second time to send its value to a user.
This happens because filesort when sorts a table remembers only values of its
fields but not values of functions.
All functions are affected. But taking into account that SP and UDF functions
can be both expensive and non-deterministic a temporary table should be used
to store their results and then sort it to avoid twice SP evaluation and to
get a correct result.
If an expression referenced in an ORDER clause contains a SP or UDF
function, force the use of a temporary table.
A new Item_processor function called func_type_checker_processor is added
to check whether the expression contains a function of a particular type.
context.
Routine arguments were evaluated in the security context of the routine
itself, not in the caller's context.
The bug is fixed the following way:
- Item_func_sp::find_and_check_access() has been split into two
functions: Item_func_sp::find_and_check_access() itself only
finds the function and check that the caller have EXECUTE privilege
on it. New function set_routine_security_ctx() changes security
context for SUID routines and checks that definer have EXECUTE
privilege too.
- new function sp_head::execute_trigger() is called from
Table_triggers_list::process_triggers() instead of
sp_head::execute_function(), and is effectively just as the
sp_head::execute_function() is, with all non-trigger related code
removed, and added trigger-specific security context switch.
- call to Item_func_sp::find_and_check_access() stays outside
of sp_head::execute_function(), and there is a code in
sql_parse.cc before the call to sp_head::execute_procedure() that
checks that the caller have EXECUTE privilege, but both
sp_head::execute_function() and sp_head::execute_procedure() call
set_routine_security_ctx() after evaluating their parameters,
and restore the context after the body is executed.
this is a cleanup patch for our current auto_increment handling:
new names for auto_increment variables in THD, new methods to manipulate them
(see sql_class.h), some move into handler::, causing less backup/restore
work when executing substatements.
This makes the logic hopefully clearer, less work is is needed in
mysql_insert().
By cleaning up, using different variables for different purposes (instead
of one for 3 things...), we fix those bugs, which someone may want to fix
in 5.0 too:
BUG#20339 "stored procedure using LAST_INSERT_ID() does not replicate
statement-based"
BUG#20341 "stored function inserting into one auto_increment puts bad
data in slave"
BUG#19243 "wrong LAST_INSERT_ID() after ON DUPLICATE KEY UPDATE"
(now if a row is updated, LAST_INSERT_ID() will return its id)
and re-fixes:
BUG#6880 "LAST_INSERT_ID() value changes during multi-row INSERT"
(already fixed differently by Ramil in 4.1)
Test of documented behaviour of mysql_insert_id() (there was no test).
The behaviour changes introduced are:
- LAST_INSERT_ID() now returns "the first autogenerated auto_increment value
successfully inserted", instead of "the first autogenerated auto_increment
value if any row was successfully inserted", see auto_increment.test.
Same for mysql_insert_id(), see mysql_client_test.c.
- LAST_INSERT_ID() returns the id of the updated row if ON DUPLICATE KEY
UPDATE, see auto_increment.test. Same for mysql_insert_id(), see
mysql_client_test.c.
- LAST_INSERT_ID() does not change if no autogenerated value was successfully
inserted (it used to then be 0), see auto_increment.test.
- if in INSERT SELECT no autogenerated value was successfully inserted,
mysql_insert_id() now returns the id of the last inserted row (it already
did this for INSERT VALUES), see mysql_client_test.c.
- if INSERT SELECT uses LAST_INSERT_ID(X), mysql_insert_id() now returns X
(it already did this for INSERT VALUES), see mysql_client_test.c.
- NDB now behaves like other engines wrt SET INSERT_ID: with INSERT IGNORE,
the id passed in SET INSERT_ID is re-used until a row succeeds; SET INSERT_ID
influences not only the first row now.
Additionally, when unlocking a table we check that the thread is not keeping
a next_insert_id (as the table is unlocked that id is potentially out-of-date);
forgetting about this next_insert_id is done in a new
handler::ha_release_auto_increment().
Finally we prepare for engines capable of reserving finite-length intervals
of auto_increment values: we store such intervals in THD. The next step
(to be done by the replication team in 5.1) is to read those intervals from
THD and actually store them in the statement-based binary log. NDB
will be a good engine to test that.
In some functions dealing with strings and character sets, the wrong
pointers were saved for restoration in THD::rollback_item_tree_changes().
This could potentially cause random corruption or crashes.
Fixed by passing the original Item ** locations, not local stack copies.
Also remove unnecessary use of default arguments.
Problem: cast to unsigned limited result to
max signed bigint 9223372036854775808,
instead of max unsigned bigint 18446744073709551615.
Fix: don't use args[0]->val_int() when casting from
a floating point number, use val() instead, with range checkings,
special to unsigned data type.
item_func.cc:
Special handling of cast from REAL_RESULT
to unsigned int: we cannot execute args[0]->val_int()
because it cuts max allowed value to LONGLONG_INT,
instead of ULONGLONG_INT required.
count_distinct3.test:
Getting rid of "Data truncated; out of range ..." warnings.
cast.test, cast.result:
Adding test case.
ps.result:
Fixing that cast from 6570515219.6535
to unsigned didn't round to 6570515220,
and returned 6570515219 instead.