Currently, rpl_semi_sync is failing in PB due to the warning message:
"Slave SQL: slave SQL thread is being stopped in the middle of "
"applying of a group having updated a non-transaction table; "
"waiting for the group completion ..."
The problem started happening after the fix for BUG#11762407 what was
automatically suppressing some warning messages.
To fix the current issue, we suppress the aforementioned warning message
and exploit the opportunity to make the sentence clearer.
Clarified error messages related to unsafe statements:
- avoid the internal technical term "row injection"
- use 'binary log' instead of 'binlog'
- avoid the word 'unsafeness'
After stopped slave, it is possible that the Dump thread on master
is still running and has locked the semi-sync master plugin, and when
uninstalling the semi-sync master plugin, a plugin busy warning could
be generated.
Fixed by disabling the warnings when uninstalling semi-sync plugin
on master.
The root cause of the crash is that a TranxNode is freed before it is used.
A TranxNode is allocated and inserted into the active list each time
a log event is written and flushed into the binlog file.
The memory for TranxNode is allocated with thd_alloc and will be freed
at the end of the statement. The after_commit/after_rollback callback
was supposed to be called before the end of each statement and remove the node from
the active list. However this assumption is not correct in all cases(e.g. call
'CREATE TEMPORARY TABLE myisam_t SELECT * FROM innodb_t' in a transaction
and delete all temporary tables automatically when a session closed),
and can cause the memory allocated for TranxNode be freed
before it was removed from the active list. So The TranxNode pointer in the active
list would become a wild pointer and cause the crash.
After this patch, We have a class called a TranxNodeAllocate which manages the memory
for allocating and freeing TranxNode. It uses my_malloc to allocate memory.
Add an option to control whether the master should keep waiting
until timeout when it detected that there is no semi-sync slave
available.
The bool option 'rpl_semi_sync_master_wait_no_slave' is 1 by
defalt, and will keep waiting until timeout. When set to 0, the
master will switch to asynchronous replication immediately when
no semi-sync slave is available.
Semi-sync status were not reset by FLUSH STATUS, this was because
all semi-sync status variables are defined as SHOW_FUNC and FLUSH
STATUS could only reset SHOW_LONG type variables.
This problem is fixed by change all status variables that should
be reset by FLUSH STATUS from SHOW_FUNC to SHOW_LONG.
After the fix, the following status variables will be reset by
FLUSH STATUS:
Rpl_semi_sync_master_yes_tx
Rpl_semi_sync_master_no_tx
Note: normally, FLUSH STATUS itself will be written into binlog
and be replicated, so after FLUSH STATS, one of
Rpl_semi_sync_master_yes_tx
Rpl_semi_sync_master_no_tx
can be 1 dependent on the semi-sync status. So it's recommended
to use FLUSH NO_WRITE_TO_BINLOG STATUS to avoid this.
Semi-sync uses an extra connection from slave to master to send
replies, this is a normal client connection, and used a normal
SET query to set the reply information on master, which is visible
to user and may cause some confusion and complaining.
This problem is fixed by using the method of sending reply by
using the same connection that is used by master dump thread to
send binlog to slave. Since now the semi-sync plugins are integrated
with the server code, it is not a problem to use the internal net
interfaces to do this.
The master dump thread will mark the event requires a reply and
wait for the reply when the event just sent is the last event
of a transaction and semi-sync status is ON; And the slave will
send a reply to master when it received such an event that requires
a reply.