Do not run the window function computation step when the select
produces no rows (zero_result_cause!=NULL).
This may cause reads from uninitialized memory.
We still need to run the window function computation step when
the output includes just one row (for example
SELECT MAX(col), RANK() OVER (...) FROM t1 WHERE 1=0).
This fix also resolves an issue with queries with window functions
producing an output row where should be none, like in
SELECT ROW_NUMBER() FROM t1 WHERE 1=0.
Updated a few test results in the existing tests to reflect this.
There was a missing test in CTE handling if creating a temporary table
failed (in this case as a result of out of space). This caused a table
handler to be used even if it was not allocated.
- Added variable tmp_disk_table_size
- Added variable tmp_memory_table_size as an alias for tmp_table_size
- Changed internal variable tmp_table_size to tmp_memory_table_size
- create_info.data_file_length is now set with tmp_disk_table_size
- Fixed that Aria doesn't reset max_data_file_length for internal tables
- Added status flag if table is full so that we can detect this on next insert.
This ensures that the table is always 'correct', but we get the error one
row after the row that grow the table too big.
- Removed some mutex lock for internal temporary tables
This is another attempt to fix the bug mdev-12992.
This patch introduces st_select_lex::context_analysis_place for
the place in SELECT where context analysis is currently performed.
It's similar to st_select_lex::parsing_place, but it is used at
the preparation stage.
This is actually a legacy bug:
SQL_SELECT::test_quick_select() was called
with SQL_SELECT::head not set.
It looks like that this problem can be
reproduced only on queries with ORDER BY
that use IN predicates converted to semi-joins.
This patch corrects the fix for bug mdev-7599.
When the min/max optimization of the function
opt_sum_query() optimizes away all tables of
a subquery it should not ever be rolled back.
If the optimizer chose an execution plan where
a semi-join nest were materialized and the
result of materialization was scanned to access
other tables by ref access it could build a key
over columns of the tables from the nest that
were actually inaccessible.
The patch performs a proper check whether a key
that uses columns of the tables from a materialized
semi-join nest can be employed to access outer tables.
This corrects the patch for mdev-10006.
The current code supports only those semi-join nests that are placed at
the join top level. So such nests cannot depend on other tables or nests.
Significantly reduce the amount of InnoDB, XtraDB and Mariabackup
code changes by defining pfs_os_file_t as something that is
transparently compatible with os_file_t.
In some rare cases queries with UNION ALL
using a derived table specified by
a grouping select with a subquery in WHERE and
impossible HAVING detected after constant row
substitution could hang.
The cause was not a proper return from the
function subselect_single_select_engine::exec()
in the case when the subquery was not optimized
beforehand and the optimization performed
in this function requested for a change of the
subquery engine. This was fixed.
Also a change was applied that avoided execution
of a subquery if impossible having was detected
for the main query at the optimization stage.
When an IN subquery predicate was converted to a semi-join that were
materialized and the result of the materialization happened to be
the last in the execution plan then any conjunctive condition with RAND()
turned out to be lost.
Fixed by attaching this condition to the last top base table.
JOIN_TAB::remove_redundant_bnl_scan_conds() removes select_cond
from a JOIN_TAB if join cache is enabled, and tab->cache_select->cond
is the equal to tab->select_cond.
But after 8d99166c69 the code to initialize join cache was moved
to happen much later than JOIN_TAB::remove_redundant_bnl_scan_conds(),
and that code might, under certain conditions, revert to *not* using
join cache (set_join_cache_denial()).
If JOIN_TAB::remove_redundant_bnl_scan_conds() removes the WHERE
condition from the JOIN_TAB and later set_join_cache_denial() disables
join cache, we end up with no WHERE condition at all.
Fix: move JOIN_TAB::remove_redundant_bnl_scan_conds() to happen
after all possible set_join_cache_denial() calls.
This patch corrects the fix for the bug mdev-10693.
It is critical for the function get_best_combination() not to call
create_ref_for_key() for constant tables.
This bug could manifest itself only in multi-table subqueries where
one of the tables is accessed by a constant primary key.
The usage of windows functions when all tables were optimized away
by min/max optimization were not supported. As result a result,
the queries that used window functions with min/max aggregation
over the whole table returned wrong result sets.
The patch fixed this problem.
The code that chooses between materialization of a non-correlated
IN subquery and its transformation into an EXISTS correlated
subquery assumes that the execution plan for the outer select
has been already built. However it was not always so if subqueries
occurred in the expressions used for ref access to tables of
the outer select. A call of the function create_ref_for_key() in
get_best_combination() could trigger a premature execution of
the above mentioned code when the execution plan structures for
the outer select were not fully built. This could cause a crash
of the server.
The fix postpones the calls of create_ref_for_key() until the
structures for the execution plan is fully built.
This patch fixed some problems that occurred with subqueries that
contained directly or indirectly recursive references to recursive CTEs.
1. A [NOT] IN predicate with a constant left operand and a non-correlated
subquery as the right operand used in the specification of a recursive CTE
was considered as a constant predicate and was evaluated only once.
Now such a predicate is re-evaluated after every iteration of the process
that produces the records of the recursive CTE.
2. The Exists-To-IN transformation could be applied to [NOT] IN predicates
with recursive references. This opened a possibility of materialization
for the subqueries used as right operands. Yet, materialization
is prohibited for the subqueries if they contain a recursive reference.
Now the Exists-To-IN transformation cannot be applied for subquery
predicates with recursive references.
The function st_select_lex::check_subqueries_with_recursive_references()
is called now only for the first execution of the SELECT.
In case of error on opening VIEW (absent table for example) it is still possible to print its definition but some variable is not set (table_list->derived->derived) so it is better do not try to test it when there is safer alternative (table_list itself).
Also fixed a wrong result for a test case for mdev-7691
(the alternative one).
The test cases for all these bug have materialized semi-joins used
inside dependent sub-queries.
The patch actually reverts the change inroduced by Monty in 2003.
It looks like this change is not valid anymore after the implementation
of semi-joins.
Adjusted output from EXPLAIN for many other test cases.
The patch actually fixes the old defect of the optimizer that
could not extract keys for range access from IN predicates
with row arguments.
This problem was resolved in the mysql-5.7 code. The patch
supersedes what was done there:
- it can build range access when not all components of
the first row argument are refer to the columns of the table
for which the range access is constructed.
- it can use equality predicates to build range access
to the table that is not referred to in this argument.
Also, implement MDEV-11027 a little differently from 5.5 and 10.0:
recv_apply_hashed_log_recs(): Change the return type back to void
(DB_SUCCESS was always returned).
Report progress also via systemd using sd_notifyf().
Also, implement MDEV-11027 a little differently from 5.5:
recv_sys_t::report(ib_time_t): Determine whether progress should
be reported.
recv_apply_hashed_log_recs(): Rename the parameter to last_batch.
'Not exists' optimization can be used for nested outer joins
only if IS NULL predicate from the WHERE condition is activated.
So we have to check that all guards that wrap this predicate
are in the 'open' state.
This patch supports usage of 'Not exists' optimization for any
outer join, no matter how it's nested in other outer joins.
This patch is also considered as a proper fix for bugs
#49322/#58490 and LP #817360.
This patch is actually a complement for the fix of bug mdev-6892.
The procedure create_tmp_table() now must take into account
Item_direct_refs that wrap up constant fields of derived tables/views
that are used as inner tables in outer join operations.
The issue was that JOIN::rollup_write_data() used
JOIN::tmp_table_param::[start_]recinfo, which had uninitialized data.
These fields have uninitialized data, because JOIN::tmp_table_param
currently only stores some grouping-related data fields. The data about
the work (temporary) tables themselves is stored in
join->join_tab[...].tmp_table_param.
The fix is to make JOIN::rollup_write_data follow this convention
and look at the right TMP_TABLE_PARAM object
Window functions need to be computed after applying the HAVING clause.
An optimization that we have for regular, non-window function, cases is
to apply having only during sending of the rows to the client. This
allows rows that should be filtered from the temporary table used to
store aggregation results to be stored there.
This behaviour is undesireable for window functions, as we have to
compute window functions on the result-set after HAVING is applied.
Storing extra rows in the table leads to wrong values as the frame
bounds might capture those -to be filtered afterwards- rows.
The problematic queries involve unions. For unions we have an
optimization where we skip the ORDER BY clause in a query from one side
of the union if it will be performed later due to UNION.
EX:
(SELECT a from t1 ORDER BY a) ORDER BY b;
The first ordering by a is not necessary and it gets removed.
The problem is that we still need to resolve the Items before removing the
ORDER BY list from the
SELECT_LEX structure. During this final resolve step however, we forgot to
allow SET functions within the ORDER BY clause. This caused us to return
an "Invalid use of group function" error during the checking performed
by fix_fields in Item_sum::init_sum_func_check.