conditions.
When allocating memory for KEY_FIELD/SARGABLE_PARAM structures the
function update_ref_and_keys did not take into account the fact that
a single row equality could be replaced by several simple equalities.
Fixed by adjusting the counter cond_count accordingly for each subquery
when performing substitution of a row equality for simple equalities.
Geometry fields have a result type string and a
special subclass to cater for the differences
between them and the base class (just like
DATE/TIME).
When creating temporary tables for results of
functions that return results of type GEOMETRY
we must construct fields of the derived class
instead of the base class.
Fixed by creating a GEOMETRY field (Field_geom)
instead of a generic BLOB (Field_blob) in temp
tables for the results of GIS functions that
have GEOMETRY return type (Item_geometry_func).
When creating a temporary table the concise column type
of a string expression is decided based on its length:
- if its length is under 512 it is stored as either
varchar or char.
- otherwise it is stored as a BLOB.
There is a flag (convert_blob_length) to create_tmp_field
that, when >0 allows to force creation of a varchar if the
max blob length is under convert_blob_length.
However it must be verified that convert_blob_length
(settable through a SQL option in some cases) is
under the maximum that can be stored in a varchar column.
While performing that check for expressions in
create_tmp_field_from_item the max length of the blob was
used instead. This causes blob columns to be created in the
heap temp table used by GROUP_CONCAT (where blobs must not
be created in the temp table because of the constant
convert_blob_length that is passed to create_tmp_field() ).
And since these blob columns are not expected in that place
we get wrong results.
Fixed by checking that the value of the flag variable is
in the limits that fit into VARCHAR instead of the max length
of the blob column.
from func_group.test after the patch for bug #27229 had been applied.
The memory corruption happened because in some rare cases the function
count_field_types underestimated the number of elements in
in the array param->items_to_copy.
context was used as an argument of GROUP_CONCAT.
Ensured correct setting of the depended_from field in references
generated for set functions aggregated in outer selects.
A wrong value of this field resulted in wrong maps returned by
used_tables() for these references.
Made sure that a temporary table field is added for any set function
aggregated in outer context when creation of a temporary table is
needed to execute the inner subquery.
what it actually means (Monty approved the renaming)
- correcting description of transaction_alloc command-line options
(our manual is correct)
- fix for a failure of rpl_trigger.
To correctly decide which predicates can be evaluated with a given table
the optimizer must know the exact set of tables that a predicate depends
on. If that mask is too wide (refer to non-existing tables) the optimizer
can erroneously skip a predicate.
One such case of wrong table usage mask were the aggregate functions.
The have a all-1 mask (meaning depend on all tables, including non-existent
ones).
Fixed by making a real used_tables mask for the aggregates. The mask is
constructed in the following way :
1. OR the table dependency masks of all the arguments of the aggregate.
2. If all the arguments of the function are from the local name resolution
context and it is evaluated in the same name resolution
context where it is referenced all the tables from that name resolution
context are OR-ed to the dependency mask. This is to denote that an
aggregate function depends on the number of rows it processes.
3. Handle correctly the case of an aggregate function optimization (such that
the aggregate function can be pre-calculated and made a constant).
Made sure that an aggregate function is never a constant (unless subject of a
specific optimization and pre-calculation).
One other flaw was revealed and fixed in the process : references were
not calling the recalculation method for used_tables of their targets.
This bug was intruduced by the fix for bug#17212 (in 4.1). It is not
ok to call test_if_skip_sort_order since this function will
alter the execution plan. By contract it is not ok to call
test_if_skip_sort_order in this context.
This bug appears only in the case when the optimizer has chosen
an index for accessing a particular table but finds a covering
index that enables it to skip ORDER BY. This happens in
test_if_skip_sort_order.
sql_yacc.yy:
WL3527: updated the diff to use correct parser words
table.cc:
WL3527: exteneded the fix for bug #20604 to fit the new variables
sql_select.cc:
WL3527: renamed used_keys to covering_keys
away.
During optimization stage the WHERE conditions can be changed or even
be removed at all if they know for sure to be true of false. Thus they aren't
showed in the EXPLAIN EXTENDED which prints conditions after optimization.
Now if all elements of an Item_cond were removed this Item_cond is substituted
for an Item_int with the int value of the Item_cond.
If there were conditions that were totally optimized away then values of the
saved cond_value and having_value will be printed instead.
Functions over sum functions wasn't set up correctly for the ORDER BY clause
which leads to a wrong order of the result set.
The split_sum_func() function is called now for each ORDER BY item that
contains a sum function to set it up correctly.
can be specified
Currently MySQL allows one to specify what indexes to ignore during
join optimization. The scope of the current USE/FORCE/IGNORE INDEX
statement is only the FROM clause, while all other clauses are not
affected.
However, in certain cases, the optimizer
may incorrectly choose an index for sorting and/or grouping, and
produce an inefficient query plan.
This task provides the means to specify what indexes are
ignored/used for what operation in a more fine-grained manner, thus
making it possible to manually force a better plan. We do this
by extending the current IGNORE/USE/FORCE INDEX syntax to:
IGNORE/USE/FORCE INDEX [FOR {JOIN | ORDER | GROUP BY}]
so that:
- if no FOR is specified, the index hint will apply everywhere.
- if MySQL is started with the compatibility option --old_mode then
an index hint without a FOR clause works as in 5.0 (i.e, the
index will only be ignored for JOINs, but can still be used to
compute ORDER BY).
See the WL#3527 for further details.
The flag alias_name_used was not set on for the outer references
in subqueries. It resulted in replacement of any outer reference
resolved against an alias for a full field name when the frm
representation of a view with a subquery was generated.
If the subquery and the outer query referenced the same table in
their from lists this replacement effectively changed the meaning
of the view and led to wrong results for selects from this view.
Modified several functions to ensure setting the right value of
the alias_name_used flag for outer references resolved against
aliases.
When the ORDER BY clause gets fixed it's allowed to search in the current
item_list in order to find aliased fields and expressions. This is ok for a
SELECT but wrong for an UPDATE statement. If the ORDER BY clause will
contain a non-existing field which is mentioned in the UPDATE set list
then the server will crash due to using of non-existing (0x0) field.
When an Item_field is getting fixed it's allowed to search item list for
aliased expressions and fields only for selects.
"Server Variables for Plugins"
Implement support for plugins to declare server variables.
Demonstrate functionality by removing InnoDB specific code from sql/*
New feature for HASH - HASH_UNIQUE flag
New feature for DYNAMIC_ARRAY - initializer accepts preallocated ptr.
Completed support for plugin reference counting.