Also fixes MDEV-32025 Crashes in MDL_key::mdl_key_init with lower-case-table-names=2
Change overview:
- In changes made in MDEV-31948, MDEV-31982 the code path
which originaly worked only in case of lower-case-table-names==1
also started to work in case of lower-case-table-names==2 in a mistake.
Restoring the original check_db_name() compatible behavior
(but without re-using check_db_name() itself).
- MDEV-31978 erroneously added a wrong DBUG_ASSERT. Removing.
Details:
- In mysql_change_db() the database name should be lower-cased only
in case of lower_case_table_names==1. It should not be lower-cased
for lower_case_table_names==2. The problem was caused by MDEV-31948.
The new code version restored the pre-MDEV-31948 behavior, which
used check_db_name() behavior.
- Passing lower_case_table_names==1 instead of just lower_case_table_names
to the "casedn" parameter to DBNameBuffer constructor in sql_parse.cc
The database name should not be lower-cased for lower_case_table_names==2.
This restores pre-MDEV-31982 behavioir which used check_db_name() here.
- Adding a new data type Lex_ident_db_normalized, it stores database
names which are both checked and normalized to lower case
in case lower_case_table_names==1 and lower_case_table_names==2.
- Changing the data type for the "db" parameter to Lex_ident_db_normalized in
lock_schema_name(), lock_db_routines(), find_db_tables_and_rm_known_files().
This is to avoid incorrectly passing a non-normalized name in the future.
- Restoring the database name normalization in mysql_create_db_internal()
and mysql_rm_db_internal() before calling lock_schema_name().
The problem was caused MDEV-31982.
- Adding database name normalization in mysql_alter_db_internal()
and mysql_upgrade_db(). This fixes MDEV-32026.
- Removing a wrong assert in Create_sp_func::create_with_db() was incorrect:
DBUG_ASSERT(Lex_ident_fs(*db).ok_for_lower_case_names());
The database name comes to here checked, but not normalized
to lower case with lower-case-table-names=2.
The assert was erroneously added by MDEV-31978.
- Recording lowercase_tables2.results and lowercase_tables4.results
according to
MDEV-29446 Change SHOW CREATE TABLE to display default collations
These tests are skipped on buildbot on all platforms, so this change
was forgotten in the patch for MDEV-29446.
- Changing the data type of the global variable any_db from
LEX_CSTRING to Lex_ident_db
- Removing the dependency on system_charset_info from
Lex_ident_fs::check_body(), using my_charset_utf8mb3_general_ci directly,
because system_charset_info is initialized much later than any_db.
system_charset_info cannot be changed dynamically any way.
- Removing the unsed old code from Lex_ident_fs::check_body().
This code was last used in MySQL-4.0 and won't be used in the future.
- Adding a new class Lex_ident_db, to store normalized database names:
lower-cased if lower-case-table-name says so,
and checked to be a valid database name using Lex_ident_fs::check_db_name()
- Reusing the new class in parameters to functions:
prepare_db_action()
mysql_create_db()
mysql_alter_db()
mysql_rm_db()
mysql_upgrade_db()
This change removed two old-style check_db_name() calls.
- Adding a class Lex_ident_fs, to store identifiers for on-disk
database objects, such as databases, tables, triggers.
- Moving the validation code from check_db_name()
to non-modifying methods in Lex_ident_fs:
Lex_ident_fs::check_body()
Lex_ident_fs::check_db_name()
Adding a new method Lex_ident_fs::check_db_name_with_error(),
which performs validation and raises an error on validation failure.
Unlike the old function check_db_name(), the new class Lex_ident_fs
does not lower-case the identifier during the validation.
Lower-casing must be done before calling Lex_ident_fs validation methods.
- Adding a low level helper template class CharBuffer which can:
* store exact or lower-cased strings with a short fixed maximum length
* return the value as a LEX_CSTRING efficiently
- Adding a helper template class DBNameBuffer (deriving from CharBuffer), to
allocate optionally lower-cased database identifiers on stack when relevant.
Useful for temporary values which don't need to be allocated on MEM_ROOT.
- Using DBNameBuffer in mysql_change_db()
- Using DBNameBuffer in show_create_db()
Before this patch, the code in Item_field::print() used
this convention (described in sql_explain.h:ExplainDataStructureLifetime):
- By default, the table that Item_field refers to is accessible.
- ANALYZE and SHOW {EXPLAIN|ANALYZE} may print Items after some
temporary tables have been dropped. They use
QT_DONT_ACCESS_TMP_TABLES flag. When it is ON, Item_field::print
will not access the table it refers to, if it is a temp.table
The bug was that EXPLAIN statement also may compute subqueries (depending
on subquery context and @@expensive_subquery_limit setting). After the
computation, the subquery calls JOIN::cleanup(true) which drops some of
its temporary tables. Calling Item_field::print() that refer to such table
will cause an access to free'd memory.
In this patch, we take into account that query optimization can compute
a subquery and discard its temporary tables. Item_field::print() now
assumes that any temporary table might have already been dropped.
This means QT_DONT_ACCESS_TMP_TABLES flag is not needed - we imply it is
always present.
But we also make one exception: derived tables are not freed in
JOIN::cleanup() call. They are freed later in close_thread_tables(),
at the same time when regular tables are closed.
Because of that, Item_field::print may assume that temp.tables
representing derived tables are available.
Initial patch by: Rex Jonston
Reviewed by: Monty <monty@mariadb.org>
- Pre-open temporary table on sequence creation.
- Without this patch, if rename alter is done on the temporary sequence,
and after that `create replace`, since table is not preopened and
alter rename marked the table as reopen, and such table is deleted in
the `find_temporary_table()` leaving the share without the table, that
causes `show tables` to fail
- Closes PR #2685
- Reviewer: <serg@mariadb.com>
The pointer was used deep in the call path.
Resolve this by setting the pointer to NULL at the end of
the function.
Tested with gcc-13.3.1 (fc38)
The warning disable 38fe266ea9 can be reverted in 10.6+ on merge.
This patch adds a way to override default collations
(or "character set collations") for desired character sets.
The SQL standard says:
> Each collation known in an SQL-environment is applicable to one
> or more character sets, and for each character set, one or more
> collations are applicable to it, one of which is associated with
> it as its character set collation.
In MariaDB, character set collations has been hard-coded so far,
e.g. utf8mb4_general_ci has been a hard-coded character set collation
for utf8mb4.
This patch allows to override (globally per server, or per session)
character set collations, so for example, uca1400_ai_ci can be set as a
character set collation for Unicode character sets
(instead of compiled xxx_general_ci).
The array of overridden character set collations is stored in a new
(session and global) system variable @@character_set_collations and
can be set as a comma separated list of charset=collation pairs, e.g.:
SET @@character_set_collations='utf8mb3=uca1400_ai_ci,utf8mb4=uca1400_ai_ci';
The variable is empty by default, which mean use the hard-coded
character set collations (e.g. utf8mb4_general_ci for utf8mb4).
The variable can also be set globally by passing to the server startup command
line, and/or in my.cnf.
The parser works as follows:
The rule expr_lex returns a pointer to a newly created sp_expr_lex
instance which is not linked to any MariaDB structures yet - it is
pointed only from a Bison stack variable. The sp_expr_lex instance
gets linked to other structures (such as sp_instr_jump_if_not) later,
after scanning some following grammar.
Problem before the fix:
If a parse error happened immediately after expr_lex (before it got linked),
the created sp_expr_lex value got lost causing a memory leak.
Fix:
- Using Bison's "destructor" directive to free the results of expr_lex
on parse/oom errors.
- Moving the call for LEX::cleanup_lex_after_parse_error() from
MYSQL_YYABORT and yyerror inside parse_sql().
This is needed because Bison calls destructors after yyerror(),
while it's important to delete the sp_expr_lex instance before
LEX::cleanup_lex_after_parse_error().
The latter frees the memory root containing the sp_expr_lex instance.
After this change the code block are executed in the following order:
- yyerror() -- now only raises the error to DA (no cleanup done any more)
- %destructor { delete $$; } <expr_lex> -- destructs the sp_expr_lex instance
- LEX::cleanup_lex_after_parse_error() -- frees the memory root containing
the sp_expr_lex instance
- Removing the "delete sublex" related code from restore_lex():
- restore_lex() is called in most cases on success, when delete is not needed.
- There is one place when restore_lex() is called on error:
In sp_create_assignment_instr(). But in this case LEX::sp_lex_in_use
is true anyway.
The patch adds a new DBUG_ASSERT(lex->sp_lex_in_use) to guard this.
This commit contains a merge from 10.5-MDEV-29293-squash
into 10.6.
Although the bug MDEV-29293 was not reproducible with 10.6,
the fix contains several improvements for wsrep KILL query and
BF abort handling, and addresses the following issues:
* MDEV-30307 KILL command issued inside a transaction is
problematic for galera replication:
This commit will remove KILL TOI replication, so Galera side
transaction context is not lost during KILL.
* MDEV-21075 KILL QUERY maintains nodes data consistency but
breaks GTID sequence: This is fixed as well as KILL does not
use TOI, and thus does not change GTID state.
* MDEV-30372 Assertion in wsrep-lib state: This was caused by
BF abort or KILL when local transaction was in the middle
of group commit. This commit disables THD::killed handling
during commit, so the problem is avoided.
* MDEV-30963 Assertion failure !lock.was_chosen_as_deadlock_victim
in trx0trx.h:1065: The assertion happened when the victim was
BF aborted via MDL while it was committing. This commit changes
MDL BF aborts so that transactions which are committing cannot
be BF aborted via MDL. The RQG grammar attached in the issue
could not reproduce the crash anymore.
Original commit message from 10.5 fix:
MDEV-29293 MariaDB stuck on starting commit state
The problem seems to be a deadlock between KILL command execution
and BF abort issued by an applier, where:
* KILL has locked victim's LOCK_thd_kill and LOCK_thd_data.
* Applier has innodb side global lock mutex and victim trx mutex.
* KILL is calling innobase_kill_query, and is blocked by innodb
global lock mutex.
* Applier is in wsrep_innobase_kill_one_trx and is blocked by
victim's LOCK_thd_kill.
The fix in this commit removes the TOI replication of KILL command
and makes KILL execution less intrusive operation. Aborting the
victim happens now by using awake_no_mutex() and ha_abort_transaction().
If the KILL happens when the transaction is committing, the
KILL operation is postponed to happen after the statement
has completed in order to avoid KILL to interrupt commit
processing.
Notable changes in this commit:
* wsrep client connections's error state may remain sticky after
client connection is closed. This error message will then pop
up for the next client session issuing first SQL statement.
This problem raised with test galera.galera_bf_kill.
The fix is to reset wsrep client error state, before a THD is
reused for next connetion.
* Release THD locks in wsrep_abort_transaction when locking
innodb mutexes. This guarantees same locking order as with applier
BF aborting.
* BF abort from MDL was changed to do BF abort on server/wsrep-lib
side first, and only then do the BF abort on InnoDB side. This
removes the need to call back from InnoDB for BF aborts which originate
from MDL and simplifies the locking.
* Removed wsrep_thd_set_wsrep_aborter() from service_wsrep.h.
The manipulation of the wsrep_aborter can be done solely on
server side. Moreover, it is now debug only variable and
could be excluded from optimized builds.
* Remove LOCK_thd_kill from wsrep_thd_LOCK/UNLOCK to allow more
fine grained locking for SR BF abort which may require locking
of victim LOCK_thd_kill. Added explicit call for
wsrep_thd_kill_LOCK/UNLOCK where appropriate.
* Wsrep-lib was updated to version which allows external
locking for BF abort calls.
Changes to MTR tests:
* Disable galera_bf_abort_group_commit. This test is going to
be removed (MDEV-30855).
* Make galera_var_retry_autocommit result more readable by echoing
cases and expectations into result. Only one expected result for
reap to verify that server returns expected status for query.
* Record galera_gcache_recover_manytrx as result file was incomplete.
Trivial change.
* Make galera_create_table_as_select more deterministic:
Wait until CTAS execution has reached MDL wait for multi-master
conflict case. Expected error from multi-master conflict is
ER_QUERY_INTERRUPTED. This is because CTAS does not yet have open
wsrep transaction when it is waiting for MDL, query gets interrupted
instead of BF aborted. This should be addressed in separate task.
* A new test galera_bf_abort_registering to check that registering trx gets
BF aborted through MDL.
* A new test galera_kill_group_commit to verify correct behavior
when KILL is executed while the transaction is committing.
Co-authored-by: Seppo Jaakola <seppo.jaakola@iki.fi>
Co-authored-by: Jan Lindström <jan.lindstrom@galeracluster.com>
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
The problem seems to be a deadlock between KILL command execution
and BF abort issued by an applier, where:
* KILL has locked victim's LOCK_thd_kill and LOCK_thd_data.
* Applier has innodb side global lock mutex and victim trx mutex.
* KILL is calling innobase_kill_query, and is blocked by innodb
global lock mutex.
* Applier is in wsrep_innobase_kill_one_trx and is blocked by
victim's LOCK_thd_kill.
The fix in this commit removes the TOI replication of KILL command
and makes KILL execution less intrusive operation. Aborting the
victim happens now by using awake_no_mutex() and ha_abort_transaction().
If the KILL happens when the transaction is committing, the
KILL operation is postponed to happen after the statement
has completed in order to avoid KILL to interrupt commit
processing.
Notable changes in this commit:
* wsrep client connections's error state may remain sticky after
client connection is closed. This error message will then pop
up for the next client session issuing first SQL statement.
This problem raised with test galera.galera_bf_kill.
The fix is to reset wsrep client error state, before a THD is
reused for next connetion.
* Release THD locks in wsrep_abort_transaction when locking
innodb mutexes. This guarantees same locking order as with applier
BF aborting.
* BF abort from MDL was changed to do BF abort on server/wsrep-lib
side first, and only then do the BF abort on InnoDB side. This
removes the need to call back from InnoDB for BF aborts which originate
from MDL and simplifies the locking.
* Removed wsrep_thd_set_wsrep_aborter() from service_wsrep.h.
The manipulation of the wsrep_aborter can be done solely on
server side. Moreover, it is now debug only variable and
could be excluded from optimized builds.
* Remove LOCK_thd_kill from wsrep_thd_LOCK/UNLOCK to allow more
fine grained locking for SR BF abort which may require locking
of victim LOCK_thd_kill. Added explicit call for
wsrep_thd_kill_LOCK/UNLOCK where appropriate.
* Wsrep-lib was updated to version which allows external
locking for BF abort calls.
Changes to MTR tests:
* Disable galera_bf_abort_group_commit. This test is going to
be removed (MDEV-30855).
* Record galera_gcache_recover_manytrx as result file was incomplete.
Trivial change.
* Make galera_create_table_as_select more deterministic:
Wait until CTAS execution has reached MDL wait for multi-master
conflict case. Expected error from multi-master conflict is
ER_QUERY_INTERRUPTED. This is because CTAS does not yet have open
wsrep transaction when it is waiting for MDL, query gets interrupted
instead of BF aborted. This should be addressed in separate task.
* A new test galera_kill_group_commit to verify correct behavior
when KILL is executed while the transaction is committing.
Co-authored-by: Seppo Jaakola <seppo.jaakola@iki.fi>
Co-authored-by: Jan Lindström <jan.lindstrom@galeracluster.com>
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
This is a backport from 10.5.
The problem seems to be a deadlock between KILL command execution
and BF abort issued by an applier, where:
* KILL has locked victim's LOCK_thd_kill and LOCK_thd_data.
* Applier has innodb side global lock mutex and victim trx mutex.
* KILL is calling innobase_kill_query, and is blocked by innodb
global lock mutex.
* Applier is in wsrep_innobase_kill_one_trx and is blocked by
victim's LOCK_thd_kill.
The fix in this commit removes the TOI replication of KILL command
and makes KILL execution less intrusive operation. Aborting the
victim happens now by using awake_no_mutex() and ha_abort_transaction().
If the KILL happens when the transaction is committing, the
KILL operation is postponed to happen after the statement
has completed in order to avoid KILL to interrupt commit
processing.
Notable changes in this commit:
* wsrep client connections's error state may remain sticky after
client connection is closed. This error message will then pop
up for the next client session issuing first SQL statement.
This problem raised with test galera.galera_bf_kill.
The fix is to reset wsrep client error state, before a THD is
reused for next connetion.
* Release THD locks in wsrep_abort_transaction when locking
innodb mutexes. This guarantees same locking order as with applier
BF aborting.
* BF abort from MDL was changed to do BF abort on server/wsrep-lib
side first, and only then do the BF abort on InnoDB side. This
removes the need to call back from InnoDB for BF aborts which originate
from MDL and simplifies the locking.
* Removed wsrep_thd_set_wsrep_aborter() from service_wsrep.h.
The manipulation of the wsrep_aborter can be done solely on
server side. Moreover, it is now debug only variable and
could be excluded from optimized builds.
* Remove LOCK_thd_kill from wsrep_thd_LOCK/UNLOCK to allow more
fine grained locking for SR BF abort which may require locking
of victim LOCK_thd_kill. Added explicit call for
wsrep_thd_kill_LOCK/UNLOCK where appropriate.
* Wsrep-lib was updated to version which allows external
locking for BF abort calls.
Changes to MTR tests:
* Disable galera_bf_abort_group_commit. This test is going to
be removed (MDEV-30855).
* Record galera_gcache_recover_manytrx as result file was incomplete.
Trivial change.
* Make galera_create_table_as_select more deterministic:
Wait until CTAS execution has reached MDL wait for multi-master
conflict case. Expected error from multi-master conflict is
ER_QUERY_INTERRUPTED. This is because CTAS does not yet have open
wsrep transaction when it is waiting for MDL, query gets interrupted
instead of BF aborted. This should be addressed in separate task.
* A new test galera_kill_group_commit to verify correct behavior
when KILL is executed while the transaction is committing.
Co-authored-by: Seppo Jaakola <seppo.jaakola@iki.fi>
Co-authored-by: Jan Lindström <jan.lindstrom@galeracluster.com>
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
Problem for Galera is the fact that sequences are not really
transactional. Sequence operation is committed immediately
in sql_sequence.cd and later Galera could find out that
we have changes but actual statement is not there anymore.
Therefore, we must make some restrictions what kind
of sequences Galera can support.
(1) Galera cluster supports only sequences implemented
by InnoDB storage engine. This is because Galera replication
supports currently only InnoDB.
(2) We do not allow LOCK TABLE on sequence object and
we do not allow sequence creation under LOCK TABLE, instead
lock is released and we issue warning.
(3) We allow sequences with NOCACHE definition or with
INCREMEMENT BY 0 CACHE=n definition. This makes sure that
sequence values are unique accross Galera cluster.
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>