or server crashes in JOIN::fix_all_splittings_in_plan after EXPLAIN
This patch resolves the problem of overflowing when performing
calculations to estimate the cost of an evaluated query execution plan.
The overflowing in a non-debug build could cause different kind of
problems uncluding crashes of the server.
This patch corrects the patch for the bug 10006. The latter incorrectly
calculates the attribute TABLE_LIST::dep_tables for inner tables
of outer joins that are to be converted into inner joins.
As a result after the patch some valid join orders were not evaluated
and the optimizer could choose an execution plan that was far from
being optimal.
The code in best_access_path function, when it does not find a key suitable for ref access
and join_cache_level is set to a value so that hash_join is possible we build a hash key.
Later in the function we compare the cost of ref access with table scan (or index scan
or quick selects). No need to do this when we have got the hash key.
The issue in this case is that we take in account the estimates from quick keys instead of rec_per_key.
The estimates for quick keys are better than rec_per_key only if we have ref(const), so we need to check
that all keyparts in the ref key are of the type ref(const).
For a table column `a`, the above expressions logically
equate to false in all cases.
With this patch the optimizer knows about this and queries
like:
SELECT * FROM t1 WHERE a!=a
no longer need to evaluate a!=a for every row.
The same applies if the expression was `a<a`, or `a>a`
An `EXPLAIN SELECT COOUNT(*) FROM t1 WHERE a<a` will show:
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Impossible WHERE
Similarly `NOT (a!=a)` is always true.
EXPLAIN SELECT COUNT(*) FROM t1 WHERE not (a!=a);
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Select tables optimized away
With MAX_INDEXIES=64(default), key_map=Bitmap<64> is just a wrapper around
ulonglong and thus "trivial" (can be bzero-ed, or memcpy-ed, and stays
valid still)
With MAX_INDEXES=128, key_map = Bitmap<128> is not a "trivial" type
anymore. The implementation uses MY_BITMAP, and MY_BITMAP contains pointers
which make Bitmap invalid, when it is memcpy-ed/bzero-ed.
The problem in 10.4 is that there are many new key_map members, inside TABLE
or KEY, and those are often memcopied and bzeroed
The fix makes Bitmap "trivial", by inlining most of MY_BITMAP functionality.
pointers/heap allocations are not used anymore.
Need to call split_sum_func if an aggregate function is part of order by
or partition by clause so that we have the required fields inside the temporary
table, as all the fields inside the partition by and order by clause of the
window function needs to be there in the temp table used for window function
computation.
The issue here is that for a window function in the ORDER BY clause, we were not
creating an extra field in the temporary table for the window function
(which is contained in an expression).
So a call to split_sum_func is added to handle this case
Also we need to update all items that contain a window function
in the temp table during window function computation as filesort would need
these values to be updated to calculate the ORDER BY clause of the select.
For degenerate joins we may have JOIN::table_list as NULL, so instead
of using JOIN::top_join_tab_count use the function JOIN::exec_join_tab_cnt
to get the number of tables joined at the top level.
with GROUP BY + ORDER BY
The method JOIN::create_postjoin_aggr_table() should not call
call JOIN::add_sorting_to_table() unless the first non-constant join
table is passed as the first parameter to the method.
Currently usage of range rowid filters can be combined only with
ref access and single index range access. So if the optimizer has
chosen some other quick select method to access a joined table
then no range rowid filter can be used for this table.
If SUBS_IN_TO_EXISTS strategy has been chosen for a subquery then
additional conditions are injected into WHERE/ON/HAVING of this subquery
and it may happen that test_quick_select() invoked from
JOIN::make_range_rowid_filters() discovers impossible range. This
must be checked.
This bug is caused by pushdown from HAVING into WHERE.
It appears because condition that is pushed wasn't fixed.
It is also discovered that condition pushdown from HAVING into
WHERE is done wrong. There is no need to build clones for some
conditions that can be pushed. They can be simply moved from HAVING
into WHERE without cloning.
build_pushable_cond_for_having_pushdown(),
remove_pushed_top_conjuncts_for_having() methods are changed.
It is found that there is no transformation made for fields of
pushed condition.
field_transformer_for_having_pushdown transformer is added.
New tests are added. Some comments are changed.
The main problem was lack of proper QueryArena handling in
`period_setup_conds`. Since mysql_prepare_update/mysql_prepare_delete
are called during `PREPARE` statement, period conditions, should be
allocated on statement query arena.
Another problem is incorrect statement state handling in
period_setup_conds, which led to unexpected mysql_update termination.
* mysql_update: move period_setup_conds() to mysql_prepare_update to
store conditions in statement's mem_root
* mtr: add period suite to default list, since --ps-protocol is now
fixed
Fixes bugs:
MDEV-18853 Assertion `0' failed in Protocol::end_statement upon DELETE .. FOR PORTION via prepared statement
MDEV-18852 Server crashes in reinit_stmt_before_use upon UPDATE .. FOR PORTION via prepared statement
The MDEV-17262 commit 26432e49d3
was skipped. In Galera 4, the implementation would seem to require
changes to the streaming replication.
In the tests archive.rnd_pos main.profiling, disable_ps_protocol
for SHOW STATUS and SHOW PROFILE commands until MDEV-18974
has been fixed.
In the function make_cond_for_table_from_pred a call of ix_fields()
missed checking of the return code. As a result an extracted constant
condition could be not well formed and this caused an assertion failure.
There were two newly enabled warnings:
1. cast for a function pointers. Affected sql_analyse.h, mi_write.c
and ma_write.cc, mf_iocache-t.cc, mysqlbinlog.cc, encryption.cc, etc
2. memcpy/memset of nontrivial structures. Fixed as:
* the warning disabled for InnoDB
* TABLE, TABLE_SHARE, and TABLE_LIST got a new method reset() which
does the bzero(), which is safe for these classes, but any other
bzero() will still cause a warning
* Table_scope_and_contents_source_st uses `TABLE_LIST *` (trivial)
instead of `SQL_I_List<TABLE_LIST>` (not trivial) so it's safe to
bzero now.
* added casts in debug_sync.cc and sql_select.cc (for JOIN)
* move assignment method for MDL_request instead of memcpy()
* PARTIAL_INDEX_INTERSECT_INFO::init() instead of bzero()
* remove constructor from READ_RECORD() to make it trivial
* replace some memcpy() with c++ copy assignments
If a splittable materialized derived table / view T is used in a inner nest
of an outer join with impossible ON condition then T is marked as a
constant table. Yet the execution plan to build T is still searched for
in spite of the fact that is not needed. So it should be set.
When the chosen execution plan accesses a join table employing a range
rowid filter a quick select to scan this range has to be built. This
quick select is built by a call of SQL_SELECT::test_quick_select().
At this call the function should allow to evaluate only single index
range scans. In order to be able to do this a new parameter was added
to this function.