Problem:
Parse-time conversion from binary to tricky character sets like utf32
produced ill-formed strings. So, later a chash happened in debug builds,
or a wrong SHOW CREATE TABLE was returned in release builds.
Fix:
1. Backporting a few methods from 10.3:
- THD::check_string_for_wellformedness()
- THD::convert_string() overloads
- THD::make_text_string_connection()
2. Adding a new method THD::reinterpret_string_from_binary(),
which makes sure to either returns a well-formed string
(optionally prepending with zero bytes), or returns an error.
The first step for deprecating innodb_autoinc_lock_mode(see MDEV-27844) is:
- to switch statement binlog format to ROW if binlog format is MIXED and
the statement changes autoincremented fields
- issue warnings if innodb_autoinc_lock_mode == 2 and binlog format is
STATEMENT
The warning out of OPTIMIZE
Statement is unsafe because it uses a system function
was indeed counterfactual and was resulted by checking an
insufficiently strict property of lex' sql_command_flags.
Fixed with deploying an additional checking of weather
the current sql command that modifes a share->non_determinstic_insert
table is capable of generating ROW format events.
The extra check rules out the unsafety to OPTIMIZE et al, while the
existing check continues to do so to CREATE TABLE (which is
perculiarly tagged as ROW-event generative sql command).
As a side effect sql_sequence.binlog test gets corrected and
binlog_stm_unsafe_warning.test is reinforced to add up
an unsafe CREATE..SELECT test.
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This patch also fixes mutex locking order and unprotected
THD member accesses on bf aborting case. We try to hold
THD::LOCK_thd_data during bf aborting. Only case where it
is not possible is at wsrep_abort_transaction before
call wsrep_innobase_kill_one_trx where we take InnoDB
mutexes first and then THD::LOCK_thd_data.
This will also fix possible race condition during
close_connection and while wsrep is disconnecting
connections.
Added wsrep_bf_kill_debug test case
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Reformulate mark_columns_used_by_index* function family in a more laconic
way:
mark_columns_used_by_index -> mark_index_columns
mark_columns_used_by_index_for_read_no_reset -> mark_index_columns_for_read
mark_columns_used_by_index_no_reset -> mark_index_columns_no_reset
static mark_index_columns -> do_mark_index_columns
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
So we are having a race condition of three of threads, resulting in a
deadlock backoff in purge, which is unexpected.
More precisely, the following happens:
T1: NOCOPY ALTER TABLE begins, and eventually it holds MDL_SHARED_NO_WRITE
lock;
T2: FLUSH TABLES begins. it sets share->tdc->flushed = true
T3: purge on a record with virtual column begins. it is going to open a
table. MDL_SHARED_READ lock is acquired therefore.
Since share->tdc->flushed is set, it waits for a TDC purge end.
T1: is going to elevate MDL LOCK to exclusive and therefore has to set
other waiters to back off.
T3: receives VICTIM status, reports a DEADLOCK, sets OT_BACKOFF_AND_RETRY
to Open_table_context::m_action
My fix is to allow opening table in purge while flushing. It is already
done the same way in other maintainance facilities like REPAIR TABLE.
Another way would be making an actual backoff, but Open_table_context
does not allow to distinguish it from other failure types, which still
seem to be unexpected. Making this would require hacking into
Open_table_context interface for no benefit, in comparison to passing
MYSQL_OPEN_IGNORE_FLUSH during table open.
Some DML operations on tables having unique secondary keys cause scanning
in the secondary index, for instance to find potential unique key violations
in the seconday index. This scanning may involve GAP locking in the index.
As this locking happens also when applying replication events in high priority
applier threads, there is a probabality for lock conflicts between two wsrep
high priority threads.
This PR avoids lock conflicts of high priority wsrep threads, which do
secondary index scanning e.g. for duplicate key detection.
The actual fix is the patch in sql_class.cc:thd_need_ordering_with(), where
we allow relaxed GAP locking protocol between wsrep high priority threads.
wsrep high priority threads (replication appliers, replayers and TOI processors)
are ordered by the replication provider, and they will not need serializability
support gained by secondary index GAP locks.
PR contains also a mtr test, which exercises a scenario where two replication
applier threads have a false positive conflict in GAP of unique secondary index.
The conflicting local committing transaction has to replay, and the test verifies
also that the replaying phase will not conflict with the latter repllication applier.
Commit also contains new test scenario for galera.galera_UK_conflict.test,
where replayer starts applying after a slave applier thread, with later seqno,
has advanced to commit phase. The applier and replayer have false positive GAP
lock conflict on secondary unique index, and replayer should ignore this.
This test scenario caused crash with earlier version in this PR, and to fix this,
the secondary index uniquenes checking has been relaxed even further.
Now innodb trx_t structure has new member: bool wsrep_UK_scan, which is set to
true, when high priority thread is performing unique secondary index scanning.
The member trx_t::wsrep_UK_scan is defined inside WITH_WSREP directive, to make
it possible to prepare a MariaDB build where this additional trx_t member is
not present and is not used in the code base. trx->wsrep_UK_scan is set to true
only for the duration of function call for: lock_rec_lock() trx->wsrep_UK_scan
is used only in lock_rec_has_to_wait() function to relax the need to wait if
wsrep_UK_scan is set and conflicting transaction is also high priority.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Server part:
kill_handlerton() was accessing thd->ha_data[] for some other thd,
while it could be concurrently modified by its owner thd.
protect thd->ha_data[] modifications with a mutex.
require this mutex when accessing thd->ha_data[] from kill_handlerton.
InnoDB part:
on close_connection, detach trx from thd before freeing the trx
This reverts the server part of the commit 775fccea0
but keeps InnoDB part (which reverted MDEV-17092 5530a93f4).
So after this both MDEV-23536 and MDEV-17092 are reverted,
and the original bug is resurrected.
A race condition may occur between the execution of transaction commit,
and an execution of a KILL statement that would attempt to abort that
transaction.
MDEV-17092 worked around this race condition by modifying InnoDB code.
After that issue was closed, Sergey Vojtovich pointed out that this
race condition would better be fixed above the storage engine layer:
If you look carefully into the above, you can conclude that
thd->free_connection() can be called concurrently with
KILL/thd->awake(). Which is the bug. And it is partially fixed in
THD::~THD(), that is destructor waits for KILL completion:
Fix: Add necessary mutex operations to THD::free_connection()
and move WSREP specific code also there. This ensures that no
one is using THD while we do free_connection(). These mutexes
will also ensures that there can't be concurrent KILL/THD::awake().
innobase_kill_query
We can now remove usage of trx_sys_mutex introduced on MDEV-17092.
trx_t::free()
Poison trx->state and trx->mysql_thd
This patch is validated with an RQG run similar to the one that
reproduced MDEV-17092.
Analysis: select into outfile creates files everytime with 666 permission,
regardsless if umask environment variables and umask settings on OS level.
It seems hardcoded.
Fix: change 0666 to 0644 which will let anybody consume the file but not
change it.
The reason for the failure is that
thd->mdl_context.release_transactional_locks()
was called after commit & rollback even in cases where the current
transaction is still active.
For 10.2, 10.3 and 10.4 the fix is simple:
- Replace all calls to thd->mdl_context.release_transactional_locks() with
thd->release_transactional_locks(). The thd function will only call
the mdl_context function if there are no active transactional locks.
In 10.6 we will better fix where we will change the return value for
some trans_xxx() functions to indicate if transaction did close the
transaction or not. This will avoid the need of the indirect call.
Other things:
- trans_xa_commit() and trans_xa_rollback() will automatically
call release_transactional_locks() if the transaction is closed.
- We can't do that for the other functions as the caller of many of these
are doing additional work (like close_thread_tables) before calling
release_transactional_locks().
- Added missing abort_result_set() and missing DBUG_RETURN in
select_create::send_eof()
- Fixed wrong indentation in injector::transaction::commit()
This follows up commit
commit 94a520ddbe and
commit 7c5519c12d.
After these changes, the default test suites on a
cmake -DWITH_UBSAN=ON build no longer fail due to passing
null pointers as parameters that are declared to never be null,
but plenty of other runtime errors remain.
- Adding optional qualifiers to data types:
CREATE TABLE t1 (a schema.DATE);
Qualifiers now work only for three pre-defined schemas:
mariadb_schema
oracle_schema
maxdb_schema
These schemas are virtual (hard-coded) for now, but may turn into real
databases on disk in the future.
- mariadb_schema.TYPE now always resolves to a true MariaDB data
type TYPE without sql_mode specific translations.
- oracle_schema.DATE translates to MariaDB DATETIME.
- maxdb_schema.TIMESTAMP translates to MariaDB DATETIME.
- Fixing SHOW CREATE TABLE to use a qualifier for a data type TYPE
if the current sql_mode translates TYPE to something else.
The above changes fix the reported problem, so this script:
SET sql_mode=ORACLE;
CREATE TABLE t2 AS SELECT mariadb_date_column FROM t1;
is now replicated as:
SET sql_mode=ORACLE;
CREATE TABLE t2 (mariadb_date_column mariadb_schema.DATE);
and the slave can unambiguously treat DATE as the true MariaDB DATE
without ORACLE specific translation to DATETIME.
Similar,
SET sql_mode=MAXDB;
CREATE TABLE t2 AS SELECT mariadb_timestamp_column FROM t1;
is now replicated as:
SET sql_mode=MAXDB;
CREATE TABLE t2 (mariadb_timestamp_column mariadb_schema.TIMESTAMP);
so the slave treats TIMESTAMP as the true MariaDB TIMESTAMP
without MAXDB specific translation to DATETIME.
* Allocate items on thd->mem_root while refixing vcol exprs
* Make vcol tree changes register and roll them back after the statement is executed.
Explanation:
Due to collation implementation specifics an Item tree could change while fixing.
The tricky thing here is to make it on a proper arena.
It's usually not a problem when a field is deterministic, however, makes a pain vice-versa, during allocation allocating.
A non-deterministic field should be refixed on each statement, since it depends on the environment state.
Changing the tree will be temporary and therefore it should be reverted after the statement execution.
The function thd_query_safe() is used in the implementation of the
following INFORMATION_SCHEMA views:
information_schema.innodb_trx
information_schema.innodb_locks
information_schema.innodb_lock_waits
information_schema.rocksdb_trx
The implementation of the InnoDB views is in trx_i_s_common_fill_table().
This function invokes trx_i_s_possibly_fetch_data_into_cache(),
which will acquire lock_sys->mutex and trx_sys->mutex in order to
protect the set of active transactions and explicit locks.
While holding those mutexes, it will traverse the collection of
InnoDB transactions. For each transaction, thd_query_safe() will be
invoked.
When called via trx_i_s_common_fill_table(), thd_query_safe()
is acquiring THD::LOCK_thd_data while holding the InnoDB locks.
This will cause a deadlock with THD::awake() (such as executing
KILL QUERY), because THD::awake() could invoke lock_trx_handle_wait(),
which attempts to acquire lock_sys->mutex while already holding
THD::lock_thd_data.
thd_query_safe(): Invoke mysql_mutex_trylock() instead of
mysql_mutex_lock(). Return the empty string if the mutex
cannot be acquired without waiting.
in fact, in MariaDB it cannot, but it can show spurious slaves
in SHOW SLAVE HOSTS.
slave was registered in COM_REGISTER_SLAVE and un-registered after
COM_BINLOG_DUMP. If there was no COM_BINLOG_DUMP, it would never
unregister.
If async slave thread (slave SQL handler), becomes a BF victim, it may occasionally happen that rollbacker thread is used to carry out the rollback instead of the async slave thread.
This can happen, if async slave thread has flagged "idle" state when BF thread tries to figure out how to kill the victim.
The issue was possible to test by using a galera cluster as slave for external master, and issuing high load of conflicting writes through async replication and directly against galera cluster nodes.
However, a deterministic mtr test for the "conflict window" has not yet been worked on.
The fix, in this patch makes sure that async slave thread state is never set to IDLE. This prevents the rollbacker thread to intervene.
The wsrep_query_state change was refactored to happen by dedicated function to make controlling the idle state change in one place.
Relates to MDEV-17863 DROP TEMPORARY TABLE creates a transaction in
binary log on read only server
Other things:
- Fixed that insert into normal_table select from tmp_table is
replicated as row events if tmp_table doesn't exists on slave.
- Use local variables table and share to simplify code
- Use sql_command_flags to detect what kind of command was used
- Added CF_DELETES_DATA to simplify detecton of delete commands
- Removed duplicate error in create_table_from_items().