When transaction creates or drops temporary tables and afterward its statement
faces an error even the transactional table statement's cached ROW
format events get involved into binlog and are visible after the transaction's commit.
Fixed with proper analysis of whether the errored-out statement needs
to be rolled back in binlog.
For instance a fact of already cached CREATE or DROP for temporary
tables by previous statements alone
does not cause to retain the being errored-out statement events in the
cache.
Conversely, if the statement creates or drops a temporary table
itself it can't be rolled back - this rule remains.
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
When transaction creates or drops temporary tables and afterward its statement
faces an error even the transactional table statement's cached ROW
format events get involved into binlog and are visible after the transaction's commit.
Fixed with proper analysis of whether the errored-out statement needs
to be rolled back in binlog.
For instance a fact of already cached CREATE or DROP for temporary
tables by previous statements alone
does not cause to retain the being errored-out statement events in the
cache.
Conversely, if the statement creates or drops a temporary table
itself it can't be rolled back - this rule remains.
Analysis: Parser was missing ROW_NUMBER as syntax for SIGNAL and RESIGNAL.
Fix: Fix parser and fix how m_row_number is copied like other attributes
to avoid ROW_NUMBER from assuming default value.
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This patch also fixes mutex locking order and unprotected
THD member accesses on bf aborting case. We try to hold
THD::LOCK_thd_data during bf aborting. Only case where it
is not possible is at wsrep_abort_transaction before
call wsrep_innobase_kill_one_trx where we take InnoDB
mutexes first and then THD::LOCK_thd_data.
This will also fix possible race condition during
close_connection and while wsrep is disconnecting
connections.
Added wsrep_bf_kill_debug test case
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
use existing Warning_info::m_current_row_for_warning instead
of a newly introduced counter.
But use m_current_row_for_warning to count rows also in the parser
and during prepare.
Extended the parser for GET DIAGNOSTICS to use ERROR_INDEX to get
warning/error index.
Error information is stored in Sql_condition. So it can be used to
store the index of warning/error too. THD::current_insert_index keeps a
track of count for each row that is processed or going to be inserted in the
table (or first row in case of prepare phase). When an error occurs,
first we need to fetch corrected error index (using correct_error_index())
for an error number. This is needed because in prepare phase, the error
may not be because of rows/values. In such case, correct value of
error_index should be 0. Once correct value if fetched, assign it to
Sql_condition::error_index when the object is created during error/warning.
This error_index variable is returned when ERROR_INDEX is used in
GET DIAGNOSTICS.
In commit 1bd681c8b3c5213ce1f7976940a7dc38b48a0d39 (MDEV-25506 part 3)
we introduced a "fake instant timeout" when a transaction would wait
for a table or record lock while holding dict_sys.latch. This prevented
a deadlock of the server but could cause bogus errors for operations
on the InnoDB persistent statistics tables.
A better fix is to ensure that whenever a transaction is being
executed in the InnoDB internal SQL parser (which will for now
require dict_sys.latch to be held), it will already have acquired
all locks that could be required for the execution. So, we will
acquire the following locks upfront, before acquiring dict_sys.latch:
(1) MDL on the affected user table (acquired by the SQL layer)
(2) If applicable (not for RENAME TABLE): InnoDB table lock
(3) If persistent statistics are going to be modified:
(3.a) MDL_SHARED on mysql.innodb_table_stats, mysql.innodb_index_stats
(3.b) exclusive table locks on the statistics tables
(4) Exclusive table locks on the InnoDB data dictionary tables
(not needed in ANALYZE TABLE and the like)
Note: Acquiring exclusive locks on the statistics tables may cause
more locking conflicts between concurrent DDL operations.
Notably, RENAME TABLE will lock the statistics tables
even if no persistent statistics are enabled for the table.
DROP DATABASE will only acquire locks on statistics tables if
persistent statistics are enabled for the tables on which the
SQL layer is invoking ha_innobase::delete_table().
For any "garbage collection" in innodb_drop_database(), a timeout
while acquiring locks on the statistics tables will result in any
statistics not being deleted for any tables that the SQL layer
did not know about.
If innodb_defragment=ON, information may be written to the statistics
tables even for tables for which InnoDB persistent statistics are
disabled. But, DROP TABLE will no longer attempt to delete that
information if persistent statistics are not enabled for the table.
This change should also fix the hangs related to InnoDB persistent
statistics and STATS_AUTO_RECALC (MDEV-15020) as well as
a bug that running ALTER TABLE on the statistics tables
concurrently with running ALTER TABLE on InnoDB tables could
cause trouble.
lock_rec_enqueue_waiting(), lock_table_enqueue_waiting():
Do not issue a fake instant timeout error when the transaction
is holding dict_sys.latch. Instead, assert that the dict_sys.latch
is never being held here.
lock_sys_tables(): A new function to acquire exclusive locks on all
dictionary tables, in case DROP TABLE or similar operation is
being executed. Locking non-hard-coded tables is optional to avoid
a crash in row_merge_drop_temp_indexes(). The SYS_VIRTUAL table was
introduced in MySQL 5.7 and MariaDB Server 10.2. Normally, we require
all these dictionary tables to exist before executing any DDL, but
the function row_merge_drop_temp_indexes() is an exception.
When upgrading from MariaDB Server 10.1 or MySQL 5.6 or earlier,
the table SYS_VIRTUAL would not exist at this point.
ha_innobase::commit_inplace_alter_table(): Invoke
log_write_up_to() while not holding dict_sys.latch.
dict_sys_t::remove(), dict_table_close(): No longer try to
drop index stubs that were left behind by aborted online ADD INDEX.
Such indexes should be dropped from the InnoDB data dictionary by
row_merge_drop_indexes() as part of the failed DDL operation.
Stubs for aborted indexes may only be left behind in the
data dictionary cache.
dict_stats_fetch_from_ps(): Use a normal read-only transaction.
ha_innobase::delete_table(), ha_innobase::truncate(), fts_lock_table():
While waiting for purge to stop using the table,
do not hold dict_sys.latch.
ha_innobase::delete_table(): Implement a work-around for the rollback
of ALTER TABLE...ADD PARTITION. MDL_EXCLUSIVE would not be held if
ALTER TABLE hits lock_wait_timeout while trying to upgrade the MDL
due to a conflicting LOCK TABLES, such as in the first ALTER TABLE
in the test case of Bug#53676 in parts.partition_special_innodb.
Therefore, we must explicitly stop purge, because it would not be
stopped by MDL.
dict_stats_func(), btr_defragment_chunk(): Allocate a THD so that
we can acquire MDL on the InnoDB persistent statistics tables.
mysqltest_embedded: Invoke ha_pre_shutdown() before free_used_memory()
in order to avoid ASAN heap-use-after-free related to acquire_thd().
trx_t::dict_operation_lock_mode: Changed the type to bool.
row_mysql_lock_data_dictionary(), row_mysql_unlock_data_dictionary():
Implemented as macros.
rollback_inplace_alter_table(): Apply an infinite timeout to lock waits.
innodb_thd_increment_pending_ops(): Wrapper for
thd_increment_pending_ops(). Never attempt async operation for
InnoDB background threads, such as the trx_t::commit() in
dict_stats_process_entry_from_recalc_pool().
lock_sys_t::cancel(trx_t*): Make dictionary transactions immune to KILL.
lock_wait(): Make dictionary transactions immune to KILL, and to
lock wait timeout when waiting for locks on dictionary tables.
parts.partition_special_innodb: Use lock_wait_timeout=0 to instantly
get ER_LOCK_WAIT_TIMEOUT.
main.mdl: Filter out MDL on InnoDB persistent statistics tables
Reviewed by: Thirunarayanan Balathandayuthapani
THD::copy_db_to(): Always return true if the output parameter
was left uninitialized. This fixes a regression that was caused
by commit 7d0d934ca642e485b2c008727dc20c83e26cce10 (MDEV-16473).
MariaDB Server 10.3 and later were unaffected by this bug
thanks to commit a7e352b54ddfaf91c92951d605cb02a4ffd2676b.
Possibly this bug only affects mysql_list_fields()
in the Embedded Server (libmysqld).
This bug was found by GCC 11.2.0 in CMAKE_BUILD_TYPE=RelWithDebInfo.
make BACKUP STAGE behave as FTWRL, desyncing and pausing the node
to prevent BF threads (appliers) from interfering with blocking stages.
This is needed because BF threads don't respect BACKUP MDL locks.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
because the name was misleading, it counts not threads, but THDs,
and as THD_count is the only way to increment/decrement it, it
could as well be declared inside THD_count.
This is useful for thing like Item_true and Item_false that we
allocated and initalize once and want to ensure that nothing can
change them
Main changes:
- Memory protection is achived by allocating memory with mmap() and
protect it from write with mprotect()
- init_alloc_root(...,MY_ROOT_USE_MPROTECT) will create a
memroot that one can later use with protect_root() to turn it
read only or turn it back to read-write. All allocations to this
memroot is done with mmap() to ensure page alligned allocations.
- alloc_root() code was rearranged to combine normal and valgrind code.
- init_alloc_root() now changes block size to be power of 2's, to get less
memory fragmentation.
- Changed MEM_ROOT structure to make it smaller. Also renamed
MEM_ROOT m_psi_key to psi_key.
- Moved MY_THREAD_SPECIFIC marker in MEM_ROOT from block size (old hack)
to flags.
- Added global variable my_system_page_size. This is initialized at
startup.
We cannot revert the ALTER, so anything happening after
the point of no return should not be treated as an error. A
very unfortunate condition that a user needs to be warned about - yes,
but we cannot say "ALTER TABLE has failed" if the table was successfully
altered.
This fixed the MySQL bug# 20338 about misuse of double underscore
prefix __WIN__, which was old MySQL's idea of identifying Windows
Replace it by _WIN32 standard symbol for targeting Windows OS
(both 32 and 64 bit)
Not that connect storage engine is not fixed in this patch (must be
fixed in "upstream" branch)
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
# Conflicts:
# sql/sql_cte.cc
# sql/sql_cte.h
# sql/sql_lex.cc
# sql/sql_lex.h
# sql/sql_view.cc
# sql/sql_yacc.yy
# sql/sql_yacc_ora.yy
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
m_status == DA_OK_BULK' failed in Diagnostics_area::message from
get_schema_tables_record
Analysis: SET NAMES changes character set for character_set_client,
character_set_connection, character_set_results to 'filename'. The .frm file of view
has @xx sequences in the SELECT query, which give parsing error because 'filename'
character set is not parser friendly. When we get parsing error (ER_PARSE_ERROR), we
directly return true without setting error status. This is caught later in assertion.
Fix: Disallow 'filename' character set in SET NAMES because it is not parser
friendly.
There are a few different cases to consider
Logging of CREATE TABLE and CREATE TABLE ... LIKE
- If REPLACE is used and there was an existing table, DDL log the drop of
the table.
- If discovery of table is to be done
- DDL LOG create table
else
- DDL log create table (with engine type)
- create the table
- If table was created
- Log entry to binary log with xid
- Mark DDL log completed
Crash recovery:
- If query was in binary log do nothing and exit
- If discoverted table
- Delete the .frm file
-else
- Drop created table and frm file
- If table was dropped, write a DROP TABLE statement in binary log
CREATE TABLE ... SELECT required a little more work as when one is using
statement logging the query is written to the binary log before commit is
done.
This was fixed by adding a DROP TABLE to the binary log during crash
recovery if the ddl log entry was not closed. In this case the binary log
will contain:
CREATE TABLE xxx ... SELECT ....
DROP TABLE xxx;
Other things:
- Added debug_crash_here() functionality to Aria to be able to test
crash in create table between the creation of the .MAI and the .MAD files.
- Major rewrite of ddl_log.cc and ddl_log.h
- ddl_log.cc described in the beginning how the recovery works.
- ddl_log.log has unique signature and is dynamic. It's easy to
add more information to the header and other ddl blocks while still
being able to execute old ddl entries.
- IO_SIZE for ddl blocks is now dynamic. Can be changed without affecting
recovery of old logs.
- Code is more modular and is now usable outside of partition handling.
- Renamed log file to dll_recovery.log and added option --log-ddl-recovery
to allow one to specify the path & filename.
- Added ddl_log_entry_phase[], number of phases for each DDL action,
which allowed me to greatly simply set_global_from_ddl_log_entry()
- Changed how strings are stored in log entries, which allows us to
store much more information in a log entry.
- ddl log is now always created at start and deleted on normal shutdown.
This simplices things notable.
- Added probes debug_crash_here() and debug_simulate_error() to simply
crash testing and allow crash after a given number of times a probe
is executed. See comments in debug_sync.cc and rename_table.test for
how this can be used.
- Reverting failed table and view renames is done trough the ddl log.
This ensures that the ddl log is tested also outside of recovery.
- Added helper function 'handler::needs_lower_case_filenames()'
- Extend binary log with Q_XID events. ddl log handling is using this
to check if a ddl log entry was logged to the binary log (if yes,
it will be deleted from the log during ddl_log_close_binlogged_events()
- If a DDL entry fails 3 time, disable it. This is to ensure that if
we have a crash in ddl recovery code the server will not get stuck
in a forever crash-restart-crash loop.
mysqltest.cc changes:
- --die will now replace $variables with their values
- $error will contain the error of the last failed statement
storage engine changes:
- maria_rename() was changed to be more robust against crashes during
rename.
The ROWNUM() function is for SELECT mapped to JOIN->accepted_rows, which is
incremented for each accepted rows.
For Filesort, update, insert, delete and load data, we map ROWNUM() to
internal variables incremented when the table is changed.
The connection between the row counter and Item_func_rownum is done
in sql_select.cc::fix_items_after_optimize() and
sql_insert.cc::fix_rownum_pointers()
When ROWNUM() is used anywhere in query, the optimization to ignore ORDER
BY in sub queries are disabled. This was done to get the following common
Oracle query to work:
select * from (select * from t1 order by a desc) as t where rownum() <= 2;
MDEV-3926 "Wrong result with GROUP BY ... WITH ROLLUP" contains a discussion
about this topic.
LIMIT optimization is enabled when in a top level WHERE clause comparing
ROWNUM() with a numerical constant using any of the following expressions:
- ROWNUM() < #
- ROWNUM() <= #
- ROWNUM() = 1
ROWNUM() can be also be the right argument to the comparison function.
LIMIT optimization is done in two cases:
- For the current sub query when the ROWNUM comparison is done on the top
level:
SELECT * from t1 WHERE rownum() <= 2 AND t1.a > 0
- For an inner sub query, when the upper level has only a ROWNUM comparison
in the WHERE clause:
SELECT * from (select * from t1) as t WHERE rownum() <= 2
In Oracle mode, one can also use ROWNUM without parentheses.
Other things:
- Fixed bug where the optimizer tries to optimize away sub queries
with RAND_TABLE_BIT set (non-deterministic queries). Now these
sub queries will not be converted to joins. This bug fix was also
needed to get rownum() working inside subqueries.
- In remove_const() remove setting simple_order to FALSE if ROLLUP is
USED. This code was disable a long time ago because of wrong assignment
in the following code. Instead we set simple_order to false if
RAND_TABLE_BIT was used in the SELECT list. This ensures that
we don't delete ORDER BY if the result set is not deterministic, like
in 'SELECT RAND() AS 'r' FROM t1 ORDER BY r';
- Updated parameters for Sort_param::init_for_filesort() to be able
to provide filesort with information where the number of accepted
rows should be stored
- Reordered fields in class Filesort to optimize storage layout
- Added new error messsage to tell that a function can't be used in HAVING
- Added field 'with_rownum' to THD to mark that ROWNUM() is used in the
query.
Co-author: Oleksandr Byelkin <sanja@mariadb.com>
LIMIT optimization for sub query
Changes:
- To detect automatic strlen() I removed the methods in String that
uses 'const char *' without a length:
- String::append(const char*)
- Binary_string(const char *str)
- String(const char *str, CHARSET_INFO *cs)
- append_for_single_quote(const char *)
All usage of append(const char*) is changed to either use
String::append(char), String::append(const char*, size_t length) or
String::append(LEX_CSTRING)
- Added STRING_WITH_LEN() around constant string arguments to
String::append()
- Added overflow argument to escape_string_for_mysql() and
escape_quotes_for_mysql() instead of returning (size_t) -1 on overflow.
This was needed as most usage of the above functions never tested the
result for -1 and would have given wrong results or crashes in case
of overflows.
- Added Item_func_or_sum::func_name_cstring(), which returns LEX_CSTRING.
Changed all Item_func::func_name()'s to func_name_cstring()'s.
The old Item_func_or_sum::func_name() is now an inline function that
returns func_name_cstring().str.
- Changed Item::mode_name() and Item::func_name_ext() to return
LEX_CSTRING.
- Changed for some functions the name argument from const char * to
to const LEX_CSTRING &:
- Item::Item_func_fix_attributes()
- Item::check_type_...()
- Type_std_attributes::agg_item_collations()
- Type_std_attributes::agg_item_set_converter()
- Type_std_attributes::agg_arg_charsets...()
- Type_handler_hybrid_field_type::aggregate_for_result()
- Type_handler_geometry::check_type_geom_or_binary()
- Type_handler::Item_func_or_sum_illegal_param()
- Predicant_to_list_comparator::add_value_skip_null()
- Predicant_to_list_comparator::add_value()
- cmp_item_row::prepare_comparators()
- cmp_item_row::aggregate_row_elements_for_comparison()
- Cursor_ref::print_func()
- Removes String_space() as it was only used in one cases and that
could be simplified to not use String_space(), thanks to the fixed
my_vsnprintf().
- Added some const LEX_CSTRING's for common strings:
- NULL_clex_str, DATA_clex_str, INDEX_clex_str.
- Changed primary_key_name to a LEX_CSTRING
- Renamed String::set_quick() to String::set_buffer_if_not_allocated() to
clarify what the function really does.
- Rename of protocol function:
bool store(const char *from, CHARSET_INFO *cs) to
bool store_string_or_null(const char *from, CHARSET_INFO *cs).
This was done to both clarify the difference between this 'store' function
and also to make it easier to find unoptimal usage of store() calls.
- Added Protocol::store(const LEX_CSTRING*, CHARSET_INFO*)
- Changed some 'const char*' arrays to instead be of type LEX_CSTRING.
- class Item_func_units now used LEX_CSTRING for name.
Other things:
- Fixed a bug in mysql.cc:construct_prompt() where a wrong escape character
in the prompt would cause some part of the prompt to be duplicated.
- Fixed a lot of instances where the length of the argument to
append is known or easily obtain but was not used.
- Removed some not needed 'virtual' definition for functions that was
inherited from the parent. I added override to these.
- Fixed Ordered_key::print() to preallocate needed buffer. Old code could
case memory overruns.
- Simplified some loops when adding char * to a String with delimiters.
The reason for the change is that neither clang or gcc can do efficient
code when several bit fields are change at the same time or when copying
one or more bits between identical bit fields.
Updated bits explicitely with & and | is MUCH more efficient than what
current compilers can do.