We hit this assert during the create of a temporary table field
because the current code does not handle the case when the value
of the NAME_CONST function is NULL.
Fixed this by allowing creation of temporary table fields even
for the case when NAME_CONST returns NULL value.
Introduced tmp_table_field_from_field_type_maybe_null() function
in Item class so both Item_basic_value and Item_name_const can use it.
Introduced a virtual method get_func_item() in the Item class.
After the commit b76b69cd5fe634d8ddb9406aa2c82ef2a375b4d8
loose index scan for queries with DISTINCT stopped working.
That is why that commit has to be reverted.
Additionally this patch fixes the problem of MDEV-10880.
Assertion `used_tables_cache == 0' failed
This bug manifested itself when executing queries
over materialized derived tables /vies and with
conjunctive always true predicates containing
inexpensive single-row subqueries.
This bug disappeared after the patch mdev-15035
had been applied.
This patch fixes another problem introduced by the patch for mdev-4817.
The latter changed Item_cond::fix_fields() in such a way that it could
call the virtual method is_expensive(). With the first its call
the method saves the result in Item::is_expensive_cache. For all next
calls the method returns the result from this cache. So if the item
once was determined as expensive the method always returns true.
For subqueries it's not good, because non-optimized subqueries always
is considered as expensive.
It means that the cache should be invalidated after the call of
optimize_constant_subqueries().
with join_cache_level>2
During muliple equality propagation for a query in which we have an IN subquery, the items in the select list of the
subquery may not be part of the multiple equality because there might be another occurence of the same field in the
where clause of the subquery.
So we keyuse_is_valid_for_access_in_chosen_plan function which expects the items in the select list of the subquery to
be same to the ones in the multiple equality (through these multiple equalities we create keyuse array).
The solution would be that we expect the same field not the same Item because when we have SEMI JOIN MATERIALIZATION SCAN,
we use copy back technique to copies back the materialised table fields to the original fields of the base tables.
This patch fixes another problem introduced by the patch for mdev-4817.
The latter changed Item_cond::fix_fields() in such a way that it could
call the virtual method is_expensive(). With the first its call
the method saves the result in Item::is_expensive_cache. For all next
calls the method returns the result from this cache. So if the item
once was determined as expensive the method always returns true.
For subqueries it's not good, because non-optimized subqueries always
is considered as expensive.
It means that the cache should be invalidated after the call of
optimize_constant_subqueries().
This patch fixes another problem introduced by the patch for mdev-4817.
The latter changed Item_cond::fix_fields() in such a way that it could
call the virtual method is_expensive(). With the first its call
the method saves the result in Item::is_expensive_cache. For all next
calls the method returns the result from this cache. So if the item
once was determined as expensive the method always returns true.
For subqueries it's not good, because non-optimized subqueries always
is considered as expensive.
It means that the cache should be invalidated after the call of
optimize_constant_subqueries().
This patch fixes another problem introduced by the patch for mdev-4817.
The latter changed Item_cond::fix_fields() in such a way that it could
call the virtual method is_expensive(). With the first its call
the method saves the result in Item::is_expensive_cache. For all next
calls the method returns the result from this cache. So if the item
once was determined as expensive the method always returns true.
For subqueries it's not good, because non-optimized subqueries always
is considered as expensive.
It means that the cache should be invalidated after the call of
optimize_constant_subqueries().
Due to a legacy bug in the code of make_join_statistics() detecting
so-called constant tables could miss some of them in rare queries
that used RIGHT JOIN. As a result these queries had execution plans
different from the execution plans of the equivalent queries with
LEFT JOIN.
Besides starting from 10.2 this could trigger an assertion failure.
When the definition of the index used for hash join was created
in create_hj_key_for_table() it could cause memory overwrite
due to a bug that led to an underestimation of the number of
the index component.
In this case we are accessing incorrect memory when we have mergeable semi-joins.
In the case when we have mergeable semi joins parent select will have a table count
of all the tables in that select plus all the tables involved in the IN-subquery.
But this table count does not include the "sjm table" (only includes the inner and outer tables)
denotes as <subquery#> in explain.
This bug happened for queries that used a materialized view that
renamed columns of the specifying query in an inner table of
an outer join. For such a query name resolution for a column
belonging the view could fail if the underlying column was
non-nullable.
When creating the defintion of the the temporary table for
the materialized view used in the inner part of an outer join
the definition of the non-nullable columns are created by the
function create_tmp_field_from_item() that names the columns
according to the names of the underlying columns. So these names
should be changed for the view column names.
This bug cannot be reproduced in 10.2 because there setup_fields()
called when preparing joins in the view specification effectively
renames the underlying columns in the function find_field_in_view().
In 10.3 this renaming was removed as improper
(see Monty's commit b478276b04d4dd122e2ed4d4e2cd7eb69c0fb2d2).
materialized derived table/view that uses aliases is done
The problem appears when a column alias inside the materialized derived
table/view t1 definition coincides with the column name used in the
GROUP BY clause of t1. If the condition that can be pushed into t1
uses that ambiguous column name this column is determined as a column that
is used in the GROUP BY clause instead of the alias used in the projection
list of t1. That causes wrong result.
To prevent it resolve_ref_in_select_and_group() was changed.
The problem described in the bug report happened because the code
did not test check_cols(1) after fix_fields() in a few places.
Additionally, fix_fields() could be called multiple times for SP variables,
because they are all fixed at a early stage in append_for_log().
Solution:
1. Adding a few helper methods
- fix_fields_if_needed()
- fix_fields_if_needed_for_scalar()
- fix_fields_if_needed_for_bool()
- fix_fields_if_needed_for_order_by()
and using it in many cases instead of fix_fields() where
the "fixed" status is not definitely known to be "false".
2. Adding DBUG_ASSERT(!fixed) into Item_splocal*::fix_fields()
to catch double execution.
3. Adding tests.
As a good side effect, the patch removes a lot of duplicate code (~60 lines):
if (!item->fixed &&
item->fix_fields(..) &&
item->check_cols(1))
return true;
Do not try to set versioning conditions on every SP call. It may work
incorrectly, but it's a general bug described in MDEV-774.
This patch makes system versioning stuff consistent with other code and
also fixes a use-after-free bug.
Closes#756