Remove CREATE/DROP database.
Remove some unnecessary suppressions, replacements, and
SQL statements.
Populate tables via have_sequence.inc to avoid the creation of
explicit InnoDB record locks in INSERT...SELECT. This will remove
some gaps in AUTO_INCREMENT values.
We should not need anywhere near 32 bits of entropy, so we might
just limit ourselves to a 32-bit random number generator.
Also, it might be cheaper to use exclusive-or, bit shifting and
conditional jumps, instead of multiplication and addition.
We use relaxed atomic operations on the global random number generator
state in order in an attempt to silence any warnings about race conditions.
There is an obvious race condition between the load and store in
ut_rnd_gen(), but we do not think that it matters much that the
state of the random number generator could 'stutter'.
This change seems makes the 'uncompress_ops' nondeterministic
in innodb_zip.cmp_per_index after the restart. It looks like
there is an inherent race condition in the test, because the
table could be opened for InnoDB statistics recalculation
already before innodb_cmp_per_index_enabled was set. We might
end up having uncompress_ops anywhere between 0 and 9, or perhaps
even more. Let us remove that part of the test.
In the test innodb.instant_alter,4k we would be flagging an error
for too large row size. That error was previously only being reported
if the table was being rebuilt. Thus, this merge is fixing a small
omission in MDEV-11369 (instant ADD COLUMN).
Move row size check to early CREATE/ALTER TABLE phase. Stop checking
on table open.
dict_index_add_to_cache(): remove parameter 'strict', stop checking row size
dict_index_t::record_size_info_t: this is a result of row size check operation
create_table_info_t::row_size_is_acceptable(): performs row size check.
Issues error or warning. Writes first overflow field to InnoDB log.
create_table_info_t::create_table(): add row size check
dict_index_t::record_size_info(): this is a refactored version
of dict_index_t::rec_potentially_too_big(). New version doesn't change global
state of a program but return all interesting info. And it's callers who
decide how to handle row size overflow.
dict_index_t::rec_potentially_too_big(): removed
This allows one to run the test suite even if any of the following
options are changed:
- character-set-server
- collation-server
- join-cache-level
- log-basename
- max-allowed-packet
- optimizer-switch
- query-cache-size and query-cache-type
- skip-name-resolve
- table-definition-cache
- table-open-cache
- Some innodb options
etc
Changes:
- Don't print out the value of system variables as one can't depend on
them to being constants.
- Don't set global variables to 'default' as the default may not
be the same as the test was started with if there was an additional
option file. Instead save original value and reset it at end of test.
- Test that depends on the latin1 character set should include
default_charset.inc or set the character set to latin1
- Test that depends on the original optimizer switch, should include
default_optimizer_switch.inc
- Test that depends on the value of a specific system variable should
set it in the test (like optimizer_use_condition_selectivity)
- Split subselect3.test into subselect3.test and subselect3.inc to
make it easier to set and reset system variables.
- Added .opt files for test that required specfic options that could
be changed by external configuration files.
- Fixed result files in rockdsb & tokudb that had not been updated for
a while.
Also, move part of the test back to innodb.innodb_mysql
and another part to a new test innodb.purge.
Last but not least, merge the tests innodb_zip.4k and innodb_zip.8k
to innodb_zip.page_size.
The parameters innodb_file_format and innodb_large_prefix were overridden
in the Debian-distributed configuration files, because the default values
of these parameters between MariaDB 5.5 and MariaDB 10.2
did not make any sense.
To allow a more seamless upgrade from MariaDB 10.1 to later versions,
let InnoDB recognize the parameters innodb_file_format and
innodb_large_prefix and issue deprecation warnings for them if they
are specified. A deprecation period of only one major release
(one year between the MariaDB 10.2 and 10.3 releases) is insufficient
for these widely used parameters.
The setting innodb_safe_truncate=ON reduces compatibility with older
versions of MariaDB and backup tools in two ways.
First, we will be writing TRX_UNDO_RENAME_TABLE records, which older
versions do not know about. These records could be misinterpreted if
a DDL transaction was recovered and would be rolled back.
Such rollback is only possible if the server was killed while
an incomplete DDL transaction was persisted. On transaction completion,
the insert_undo log pages would only be repurposed for new undo log
allocations, and their contents would not matter. So, older versions
will not have a problem with innodb_safe_truncate=ON if the server was
shut down cleanly.
Second, to prevent such recovery failure, innodb_safe_truncate=ON will
cause a modification of the redo log format identifier, which will
prevent older versions from starting up after a crash. MariaDB Server
versions older than 10.2.13 will refuse to start up altogether, even
after clean shutdown.
A server restart with innodb_safe_truncate=OFF will restore compatibility
with older server and backup versions.
Rename the 10.2-specific configuration option innodb_unsafe_truncate
to innodb_safe_truncate, and invert its value.
The default (for now) is innodb_safe_truncate=OFF, to avoid
disrupting users with an undo and redo log format change within
a Generally Available (GA) release series.
While MariaDB Server 10.2 is not really guaranteed to be compatible
with Percona XtraBackup 2.4 (for example, the MySQL 5.7 undo log format
change that could be present in XtraBackup, but was reverted from
MariaDB in MDEV-12289), we do not want to disrupt users who have
deployed xtrabackup and MariaDB Server 10.2 in their environments.
With this change, MariaDB 10.2 will continue to use the backup-unsafe
TRUNCATE TABLE code, so that neither the undo log nor the redo log
formats will change in an incompatible way.
Undo tablespace truncation will keep using the redo log only. Recovery
or backup with old code will fail to shrink the undo tablespace files,
but the contents will be recovered just fine.
In the MariaDB Server 10.2 series only, we introduce the configuration
parameter innodb_unsafe_truncate and make it ON by default. To allow
MariaDB Backup (mariabackup) to work properly with TRUNCATE TABLE
operations, use loose_innodb_unsafe_truncate=OFF.
MariaDB Server 10.3.10 and later releases will always use the
backup-safe TRUNCATE TABLE, and this parameter will not be
added there.
recv_recovery_rollback_active(): Skip row_mysql_drop_garbage_tables()
unless innodb_unsafe_truncate=OFF. It is too unsafe to drop orphan
tables if RENAME operations are not transactional within InnoDB.
LOG_HEADER_FORMAT_10_3: Replaces LOG_HEADER_FORMAT_CURRENT.
log_init(), log_group_file_header_flush(),
srv_prepare_to_delete_redo_log_files(),
innobase_start_or_create_for_mysql(): Choose the redo log format
and subformat based on the value of innodb_unsafe_truncate.
This is a merge from 10.2, but the 10.2 version of this will not
be pushed into 10.2 yet, because the 10.2 version would include
backports of MDEV-14717 and MDEV-14585, which would introduce
a crash recovery regression: Tables could be lost on
table-rebuilding DDL operations, such as ALTER TABLE,
OPTIMIZE TABLE or this new backup-friendly TRUNCATE TABLE.
The test innodb.truncate_crash occasionally loses the table due to
the following bug:
MDEV-17158 log_write_up_to() sometimes fails
Implement undo tablespace truncation via normal redo logging.
Implement TRUNCATE TABLE as a combination of RENAME to #sql-ib name,
CREATE, and DROP.
Note: Orphan #sql-ib*.ibd may be left behind if MariaDB Server 10.2
is killed before the DROP operation is committed. If MariaDB Server 10.2
is killed during TRUNCATE, it is also possible that the old table
was renamed to #sql-ib*.ibd but the data dictionary will refer to the
table using the original name.
In MariaDB Server 10.3, RENAME inside InnoDB is transactional,
and #sql-* tables will be dropped on startup. So, this new TRUNCATE
will be fully crash-safe in 10.3.
ha_mroonga::wrapper_truncate(): Pass table options to the underlying
storage engine, now that ha_innobase::truncate() will need them.
rpl_slave_state::truncate_state_table(): Before truncating
mysql.gtid_slave_pos, evict any cached table handles from
the table definition cache, so that there will be no stale
references to the old table after truncating.
== TRUNCATE TABLE ==
WL#6501 in MySQL 5.7 introduced separate log files for implementing
atomic and crash-safe TRUNCATE TABLE, instead of using the InnoDB
undo and redo log. Some convoluted logic was added to the InnoDB
crash recovery, and some extra synchronization (including a redo log
checkpoint) was introduced to make this work. This synchronization
has caused performance problems and race conditions, and the extra
log files cannot be copied or applied by external backup programs.
In order to support crash-upgrade from MariaDB 10.2, we will keep
the logic for parsing and applying the extra log files, but we will
no longer generate those files in TRUNCATE TABLE.
A prerequisite for crash-safe TRUNCATE is a crash-safe RENAME TABLE
(with full redo and undo logging and proper rollback). This will
be implemented in MDEV-14717.
ha_innobase::truncate(): Invoke RENAME, create(), delete_table().
Because RENAME cannot be fully rolled back before MariaDB 10.3
due to missing undo logging, add some explicit rename-back in
case the operation fails.
ha_innobase::delete(): Introduce a variant that takes sqlcom as
a parameter. In TRUNCATE TABLE, we do not want to touch any
FOREIGN KEY constraints.
ha_innobase::create(): Add the parameters file_per_table, trx.
In TRUNCATE, the new table must be created in the same transaction
that renames the old table.
create_table_info_t::create_table_info_t(): Add the parameters
file_per_table, trx.
row_drop_table_for_mysql(): Replace a bool parameter with sqlcom.
row_drop_table_after_create_fail(): New function, wrapping
row_drop_table_for_mysql().
dict_truncate_index_tree_in_mem(), fil_truncate_tablespace(),
fil_prepare_for_truncate(), fil_reinit_space_header_for_table(),
row_truncate_table_for_mysql(), TruncateLogger,
row_truncate_prepare(), row_truncate_rollback(),
row_truncate_complete(), row_truncate_fts(),
row_truncate_update_system_tables(),
row_truncate_foreign_key_checks(), row_truncate_sanity_checks():
Remove.
row_upd_check_references_constraints(): Remove a check for
TRUNCATE, now that the table is no longer truncated in place.
The new test innodb.truncate_foreign uses DEBUG_SYNC to cover some
race-condition like scenarios. The test innodb-innodb.truncate does
not use any synchronization.
We add a redo log subformat to indicate backup-friendly format.
MariaDB 10.4 will remove support for the old TRUNCATE logging,
so crash-upgrade from old 10.2 or 10.3 to 10.4 will involve
limitations.
== Undo tablespace truncation ==
MySQL 5.7 implements undo tablespace truncation. It is only
possible when innodb_undo_tablespaces is set to at least 2.
The logging is implemented similar to the WL#6501 TRUNCATE,
that is, using separate log files and a redo log checkpoint.
We can simply implement undo tablespace truncation within
a single mini-transaction that reinitializes the undo log
tablespace file. Unfortunately, due to the redo log format
of some operations, currently, the total redo log written by
undo tablespace truncation will be more than the combined size
of the truncated undo tablespace. It should be acceptable
to have a little more than 1 megabyte of log in a single
mini-transaction. This will be fixed in MDEV-17138 in
MariaDB Server 10.4.
recv_sys_t: Add truncated_undo_spaces[] to remember for which undo
tablespaces a MLOG_FILE_CREATE2 record was seen.
namespace undo: Remove some unnecessary declarations.
fil_space_t::is_being_truncated: Document that this flag now
only applies to undo tablespaces. Remove some references.
fil_space_t::is_stopping(): Do not refer to is_being_truncated.
This check is for tablespaces of tables. Potentially used
tablespaces are never truncated any more.
buf_dblwr_process(): Suppress the out-of-bounds warning
for undo tablespaces.
fil_truncate_log(): Write a MLOG_FILE_CREATE2 with a nonzero
page number (new size of the tablespace in pages) to inform
crash recovery that the undo tablespace size has been reduced.
fil_op_write_log(): Relax assertions, so that MLOG_FILE_CREATE2
can be written for undo tablespaces (without .ibd file suffix)
for a nonzero page number.
os_file_truncate(): Add the parameter allow_shrink=false
so that undo tablespaces can actually be shrunk using this function.
fil_name_parse(): For undo tablespace truncation,
buffer MLOG_FILE_CREATE2 in truncated_undo_spaces[].
recv_read_in_area(): Avoid reading pages for which no redo log
records remain buffered, after recv_addr_trim() removed them.
trx_rseg_header_create(): Add a FIXME comment that we could write
much less redo log.
trx_undo_truncate_tablespace(): Reinitialize the undo tablespace
in a single mini-transaction, which will be flushed to the redo log
before the file size is trimmed.
recv_addr_trim(): Discard any redo logs for pages that were
logged after the new end of a file, before the truncation LSN.
If the rec_list becomes empty, reduce n_addrs. After removing
any affected records, actually truncate the file.
recv_apply_hashed_log_recs(): Invoke recv_addr_trim() right before
applying any log records. The undo tablespace files must be open
at this point.
buf_flush_or_remove_pages(), buf_flush_dirty_pages(),
buf_LRU_flush_or_remove_pages(): Add a parameter for specifying
the number of the first page to flush or remove (default 0).
trx_purge_initiate_truncate(): Remove the log checkpoints, the
extra logging, and some unnecessary crash points. Merge the code
from trx_undo_truncate_tablespace(). First, flush all to-be-discarded
pages (beyond the new end of the file), then trim the space->size
to make the page allocation deterministic. At the only remaining
crash injection point, flush the redo log, so that the recovery
can be tested.
- If select query chooses the index 'b' over clustered index then the issue
can happen. Changed the test case to use primary index for the select
query.
InnoDB in Debian uses utf8mb4 as default character set since
version 10.0.20-2. This leads to major pain due to keys longer
than 767 bytes.
MariaDB 10.2 (and MySQL 5.7) introduced the setting
innodb_default_row_format that is DYNAMIC by default. These
versions also changed the default values of the parameters
innodb_large_prefix=ON and innodb_file_format=Barracuda.
This would allow longer column index prefixes to be created.
The original purpose of these parameters was to allow InnoDB
to be downgraded to MySQL 5.1, which is long out of support.
Every InnoDB version since MySQL 5.5 does support operation
with the relaxed limits.
We backport the parameter innodb_default_row_format to
MariaDB 10.1, but we will keep its default value at COMPACT.
This allows MariaDB 10.1 to be configured so that CREATE TABLE
is less likely to encounter a problem with the limitation:
loose_innodb_large_prefix=ON
loose_innodb_default_row_format=DYNAMIC
(Note that the setting innodb_large_prefix was deprecated in
MariaDB 10.2 and removed in MariaDB 10.3.)
The only observable difference in the behaviour with the default
settings should be that ROW_FORMAT=DYNAMIC tables can be created
both in the system tablespace and in .ibd files, no matter what
innodb_file_format has been assigned to. Unlike MariaDB 10.2,
we are not changing the default value of innodb_file_format,
so ROW_FORMAT=COMPRESSED tables cannot be created without
changing the parameter.
This MySQL 5.5 test innodb_zip.innodb_prefix_index_lifted
was renamed in MySQL 5.7. In
commit 2e814d4702
the test was inadvertently removed, instead of being renamed.
The absence of this test caused a regression in MariaDB 10.2:
MDEV-15257 Invalid CREATE INDEX fails to report error correctly
ibuf_check_bitmap_on_import(): Only access the pages that
are below FSP_FREE_LIMIT. It is possible that especially with
ROW_FORMAT=COMPRESSED, the FSP_SIZE will be much bigger than
the FSP_FREE_LIMIT, and the bitmap pages (page_size*N, 1+page_size*N)
are filled with zero bytes.
buf_page_is_corrupted(), buf_page_io_complete(): Make the
fault injection compatible with MariaDB 10.2.
Backport the IMPORT tests from 10.2.
This is a 10.3 specific part of MDEV-13049.
It disables automatic sorting for
"SELECT .. FROM INFORMATION_SCHEMA.{SCHEMATA|TABLES}"
and adjusts the affected tests accordingly.
MDEV-13851 Always check table options in ALTER TABLE…ALGORITHM=INPLACE
In the merge of MySQL 5.7.9 to MariaDB 10.2.2, some code was included
that prevents ADD SPATIAL INDEX from being executed with ALGORITHM=INPLACE.
Also, the constant ADD_SPATIAL_INDEX was introduced as an alias
to ADD_INDEX. We will remove that alias now, and properly implement
the same ADD SPATIAL INDEX restrictions as MySQL 5.7 does:
1. table-rebuilding operations are not allowed if SPATIAL INDEX survive it
2. ALTER TABLE…ADD SPATIAL INDEX…LOCK=NONE is not allowed
ha_innobase::prepare_inplace_alter_table(): If the ALTER TABLE
requires actions within InnoDB, enforce the table options (MDEV-13851).
In this way, we will keep denying ADD SPATIAL INDEX for tables
that use encryption (MDEV-11974), even if ALGORITHM=INPLACE is used.
The InnoDB purge subsystem can be best stopped by opening a read view,
for example by START TRANSACTION WITH CONSISTENT SNAPSHOT.
To ensure that everything is purged, use wait_all_purged.inc,
which waits for the History list length in SHOW ENGINE INNODB STATUS
to reach 0. Setting innodb_purge_run_now never guaranteed this.
This should have been part of MDEV-12288.
trx_undo_t::del_marks: Remove.
Purge needs to process all undo log records in order to
reset the DB_TRX_ID. Before MDEV-12288, it sufficed to only delete
the purgeable delete-marked records, and it ignore other undo log.
trx_rseg_t::needs_purge: Renamed from trx_rseg_t::last_del_marks.
Indicates whether a rollback segment needs to be processed by purge.
TRX_UNDO_NEEDS_PURGE: Renamed from TRX_UNDO_DEL_MARKS.
Indicates whether a rollback segment needs to be processed by purge.
This will be 1 until trx_purge_free_segment() has been invoked.
row_purge_record_func(): Set the is_insert flag for TRX_UNDO_INSERT_REC,
so that the DB_ROLL_PTR will match in row_purge_reset_trx_id().
trx_purge_fetch_next_rec(): Add a comment about row_purge_record_func()
going to set the is_insert flag.
trx_purge_read_undo_rec(): Always attempt to read the undo log record.
trx_purge_get_next_rec(): Do not skip any undo log records.
Even when no clustered index record is going to be removed,
we may want to reset some DB_TRX_ID,DB_ROLL_PTR.
trx_undo_rec_get_cmpl_info(), trx_undo_rec_get_extern_storage(): Remove.
trx_purge_add_undo_to_history(): Set the TRX_UNDO_NEEDS_PURGE flag
so that the resetting will work on undo logs that were originally
created before MDEV-12288 (MariaDB 10.3.1).
trx_undo_roll_ptr_is_insert(), trx_purge_free_segment(): Cleanup
(should be no functional change).
Always read full page 0 to determine does tablespace contain
encryption metadata. Tablespaces that are page compressed or
page compressed and encrypted do not compare checksum as
it does not exists. For encrypted tables use checksum
verification written for encrypted tables and normal tables
use normal method.
buf_page_is_checksum_valid_crc32
buf_page_is_checksum_valid_innodb
buf_page_is_checksum_valid_none
Modify Innochecksum logging to file to avoid compilation
warnings.
fil0crypt.cc fil0crypt.h
Modify to be able to use in innochecksum compilation and
move fil_space_verify_crypt_checksum to end of the file.
Add innochecksum logging to file.
univ.i
Add innochecksum strict_verify, log_file and cur_page_num
variables as extern.
page_zip_verify_checksum
Add innochecksum logging to file and remove unnecessary code.
innochecksum.cc
Lot of changes most notable able to read encryption
metadata from page 0 of the tablespace.
Added test case where we corrupt intentionally
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION (encryption key version)
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION+4 (post encryption checksum)
FIL_DATA+10 (data)
Let InnoDB purge reset DB_TRX_ID,DB_ROLL_PTR when the history is removed.
[TODO: It appears that the resetting is not taking place as often as
it could be. We should test that a simple INSERT should eventually
cause row_purge_reset_trx_id() to be invoked unless DROP TABLE is
invoked soon enough.]
The InnoDB clustered index record system columns DB_TRX_ID,DB_ROLL_PTR
are used by multi-versioning. After the history is no longer needed, these
columns can safely be reset to 0 and 1<<55 (to indicate a fresh insert).
When a reader sees 0 in the DB_TRX_ID column, it can instantly determine
that the record is present the read view. There is no need to acquire
the transaction system mutex to check if the transaction exists, because
writes can never be conducted by a transaction whose ID is 0.
The persistent InnoDB undo log used to be split into two parts:
insert_undo and update_undo. The insert_undo log was discarded at
transaction commit or rollback, and the update_undo log was processed
by the purge subsystem. As part of this change, we will only generate
a single undo log for new transactions, and the purge subsystem will
reset the DB_TRX_ID whenever a clustered index record is touched.
That is, all persistent undo log will be preserved at transaction commit
or rollback, to be removed by purge.
The InnoDB redo log format is changed in two ways:
We remove the redo log record type MLOG_UNDO_HDR_REUSE, and
we introduce the MLOG_ZIP_WRITE_TRX_ID record for updating the
DB_TRX_ID,DB_ROLL_PTR in a ROW_FORMAT=COMPRESSED table.
This is also changing the format of persistent InnoDB data files:
undo log and clustered index leaf page records. It will still be
possible via import and export to exchange data files with earlier
versions of MariaDB. The change to clustered index leaf page records
is simple: we allow DB_TRX_ID to be 0.
When it comes to the undo log, we must be able to upgrade from earlier
MariaDB versions after a clean shutdown (no redo log to apply).
While it would be nice to perform a slow shutdown (innodb_fast_shutdown=0)
before an upgrade, to empty the undo logs, we cannot assume that this
has been done. So, separate insert_undo log may exist for recovered
uncommitted transactions. These transactions may be automatically
rolled back, or they may be in XA PREPARE state, in which case InnoDB
will preserve the transaction until an explicit XA COMMIT or XA ROLLBACK.
Upgrade has been tested by starting up MariaDB 10.2 with
./mysql-test-run --manual-gdb innodb.read_only_recovery
and then starting up this patched server with
and without --innodb-read-only.
trx_undo_ptr_t::undo: Renamed from update_undo.
trx_undo_ptr_t::old_insert: Renamed from insert_undo.
trx_rseg_t::undo_list: Renamed from update_undo_list.
trx_rseg_t::undo_cached: Merged from update_undo_cached
and insert_undo_cached.
trx_rseg_t::old_insert_list: Renamed from insert_undo_list.
row_purge_reset_trx_id(): New function to reset the columns.
This will be called for all undo processing in purge
that does not remove the clustered index record.
trx_undo_update_rec_get_update(): Allow trx_id=0 when copying the
old DB_TRX_ID of the record to the undo log.
ReadView::changes_visible(): Allow id==0. (Return true for it.
This is what speeds up the MVCC.)
row_vers_impl_x_locked_low(), row_vers_build_for_semi_consistent_read():
Implement a fast path for DB_TRX_ID=0.
Always initialize the TRX_UNDO_PAGE_TYPE to 0. Remove undo->type.
MLOG_UNDO_HDR_REUSE: Remove. This changes the redo log format!
innobase_start_or_create_for_mysql(): Set srv_undo_sources before
starting any transactions.
The parsing of the MLOG_ZIP_WRITE_TRX_ID record was successfully
tested by running the following:
./mtr --parallel=auto --mysqld=--debug=d,ib_log innodb_zip.bug56680
grep MLOG_ZIP_WRITE_TRX_ID var/*/log/mysqld.1.err
Rewrite the test encryption.innodb-checksum-algorithm not to
require any restarts or re-bootstrapping, and to cover all
innodb_page_size combinations.
Test innodb.101_compatibility with all innodb_page_size combinations.
innodb_page_size_small: A new set of combinations, for
innodb_page_size up to 16k. In MariaDB 10.0, this does not
make a difference, but in 10.1 and later, innodb_page_size
would cover 32k and 64k, for which ROW_FORMAT=COMPRESSED
is not available.
Enable these combinations in a few InnoDB tests.
The following options will be removed:
innodb_file_format
innodb_file_format_check
innodb_file_format_max
innodb_large_prefix
They have been deprecated in MySQL 5.7.7 (and MariaDB 10.2.2) in WL#7703.
The file_format column in two INFORMATION_SCHEMA tables will be removed:
innodb_sys_tablespaces
innodb_sys_tables
Code to update the file format tag at the end of page 0:5
(TRX_SYS_PAGE in the InnoDB system tablespace) will be removed.
When initializing a new database, the bytes will remain 0.
All references to the Barracuda file format will be removed.
Some references to the Antelope file format (meaning
ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT) will remain.
This basically ports WL#7704 from MySQL 8.0.0 to MariaDB 10.3.1:
commit 4a69dc2a95995501ed92d59a1de74414a38540c6
Author: Marko Mäkelä <marko.makela@oracle.com>
Date: Wed Mar 11 22:19:49 2015 +0200
This bug was introduced in the fix of MDEV-12123, which invoked
page_zip_write_header() in the wrong way.
page_zip_write_header(): Assert that the length is not zero, to
be compatible with page_zip_parse_write_header().
btr_root_raise_and_insert(): Update the uncompressed page and then
invoke page_zip_write_header() with the correct length.