Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
3655 Jon Olav Hauglid 2009-10-19
Bug #30977 Concurrent statement using stored function and DROP FUNCTION
breaks SBR
Bug #48246 assert in close_thread_table
Implement a fix for:
Bug #41804 purge stored procedure cache causes mysterious hang for many
minutes
Bug #49972 Crash in prepared statements
The problem was that concurrent execution of DML statements that
use stored functions and DDL statements that drop/modify the same
function might result in incorrect binary log in statement (and
mixed) mode and therefore break replication.
This patch fixes the problem by introducing metadata locking for
stored procedures and functions. This is similar to what is done
in Bug#25144 for views. Procedures and functions now are
locked using metadata locks until the transaction is either
committed or rolled back. This prevents other statements from
modifying the procedure/function while it is being executed. This
provides commit ordering - guaranteeing serializability across
multiple transactions and thus fixes the reported binlog problem.
Note that we do not take locks for top-level CALLs. This means
that procedures called directly are not protected from changes by
simultaneous DDL operations so they are executed at the state they
had at the time of the CALL. By not taking locks for top-level
CALLs, we still allow transactions to be started inside
procedures.
This patch also changes stored procedure cache invalidation.
Upon a change of cache version, we no longer invalidate the entire
cache, but only those routines which we use, only when a statement
is executed that uses them.
This patch also changes the logic of prepared statement validation.
A stored procedure used by a prepared statement is now validated
only once a metadata lock has been acquired. A version mismatch
causes a flush of the obsolete routine from the cache and
statement reprepare.
Incompatible changes:
1) ER_LOCK_DEADLOCK is reported for a transaction trying to access
a procedure/function that is locked by a DDL operation in
another connection.
2) Procedure/function DDL operations are now prohibited in LOCK
TABLES mode as exclusive locks must be taken all at once and
LOCK TABLES provides no way to specifiy procedures/functions to
be locked.
Test cases have been added to sp-lock.test and rpl_sp.test.
Work on this bug has very much been a team effort and this patch
includes and is based on contributions from Davi Arnaut, Dmitry
Lenev, Magne Mæhre and Konstantin Osipov.
Problem 1: tests often fail in pushbuild with a timeout when waiting
for the slave to start/stop/receive error.
Fix 1: Updated the wait_for_slave_* macros in the following way:
- The timeout is increased by a factor ten
- Refactored the macros so that wait_for_slave_param does the work for
the other macros.
Problem 2: Tests are often incorrectly written, lacking a
source include/wait_for_slave_to_[start|stop].inc.
Fix 2: Improved the chance to get it right by adding
include/start_slave.inc and include/stop_slave.inc, and updated tests
to use these.
Problem 3: The the built-in test language command
wait_for_slave_to_stop is a misnomer (does not wait for the slave io
thread) and does not give as much debug info in case of failure as
the otherwise equivalent macro
source include/wait_for_slave_sql_to_stop.inc
Fix 3: Replaced all calls to the built-in command by a call to the
macro.
Problem 4: Some, but not all, of the wait_for_slave_* macros had an
implicit connection slave. This made some tests confusing to read,
and made it more difficult to use the macro in circular replication
scenarios, where the connection named master needs to wait.
Fix 4: Removed the implicit connection slave from all
wait_for_slave_* macros, and updated tests to use an explicit
connection slave where necessary.
Problem 5: The macros wait_slave_status.inc and wait_show_pattern.inc
were unused. Moreover, using them is difficult and error-prone.
Fix 5: remove these macros.
Problem 6: log_bin_trust_function_creators_basic failed when running
tests because it assumed @@global.log_bin_trust_function_creators=1,
and some tests modified this variable without resetting it to its
original value.
Fix 6: All tests that use this variable have been updated so that
they reset the value at end of test.