Clarified error messages related to unsafe statements:
- avoid the internal technical term "row injection"
- use 'binary log' instead of 'binlog'
- avoid the word 'unsafeness'
BUG#46364 introduced the flag binlog_direct_non_transactional_updates which
would make N-changes to be written to the binary log upon committing the
statement when "ON". On the other hand, when "OFF" the option was supposed
to mimic the behavior in 5.1. However, the implementation was not mimicking
the behavior correctly and the following bugs popped up:
Case #1: N-changes executed within a transaction would go into
the S-cache. When later in the same transaction a
T-change occurs, N-changes following it were written
to the T-cache instead of the S-cache. In some cases,
this raises problems. For example, a
Table_map_log_event being written initially into the
S-cache, together with the initial N-changes, would be
absent from the T-cache. This would log N-changes
orphaned from a Table_map_log_event (thence discarded
at the slave). (MIXED and ROW)
Case #2: When rolling back a transaction, the N-changes that
might be in the T-cache were disregarded and
truncated along with the T-changes. (MIXED and ROW)
Case #3: When a MIXED statement (TN) is ahead of any other
T-changes in the transaction and it fails, it is kept
in the T-cache until the transaction ends. This is
not the case in 5.1 or Betony (5.5.2). In these, the
failed TN statement would be written to the binlog at
the same instant it had failed and not deferred until
transaction end. (SBR)
To fix these problems, we have decided to do what follows:
For Case #1 and #2, we circumvent them:
1. by not letting binlog_direct_non_transactional_updates
affect MIXED and RBR. These modes will keep the behavior
provided by WL#2687. Although this will make Celosia to
behave differently from 5.1, an execution will be always
safe under such modes in the sense that slaves will never
go out sync. In 5.1, using either MIXED or ROW while
mixing N-statements and T-statements was not safe.
For Case #3, we don't actually fix it. We:
1. keep it and make all MIXED statements whether they end
up failing or not or whether they are up front in the
transaction or after some transactional change to always
be stored in the T-cache. This means that it is written
to the binary log on transaction commit/rollback only.
2. We make the warning message even more specific about the
MIXED statement and SBR.
Conflicts:
- mysql-test/r/mysqld--help-win.result
- sql/sys_vars.cc
Original revsion (in next-mr-bugfixing):
------------------------------------------------------------
revno: 2971 [merge]
revision-id: alfranio.correia@sun.com-20100121210527-rbuheu5rnsmcakh1
committer: Alfranio Correia <alfranio.correia@sun.com>
branch nick: mysql-next-mr-bugfixing
timestamp: Thu 2010-01-21 21:05:27 +0000
message:
BUG#46364 MyISAM transbuffer problems (NTM problem)
It is well-known that due to concurrency issues, a slave can become
inconsistent when a transaction contains updates to both transaction and
non-transactional tables.
In a nutshell, the current code-base tries to preserve causality among the
statements by writing non-transactional statements to the txn-cache which
is flushed upon commit. However, modifications done to non-transactional
tables on behalf of a transaction become immediately visible to other
connections but may not immediately get into the binary log and therefore
consistency may be broken.
In general, it is impossible to automatically detect causality/dependency
among statements by just analyzing the statements sent to the server. This
happen because dependency may be hidden in the application code and it is
necessary to know a priori all the statements processed in the context of
a transaction such as in a procedure. Moreover, even for the few cases that
we could automatically address in the server, the computation effort
required could make the approach infeasible.
So, in this patch we introduce the option
- "--binlog-direct-non-transactional-updates" that can be used to bypass
the current behavior in order to write directly to binary log statements
that change non-transactional tables.
Besides, it is used to enable the WL#2687 which is disabled by default.
------------------------------------------------------------
revno: 2970.1.1
revision-id: alfranio.correia@sun.com-20100121131034-183r4qdyld7an5a0
parent: alik@sun.com-20100121083914-r9rz2myto3tkdya0
committer: Alfranio Correia <alfranio.correia@sun.com>
branch nick: mysql-next-mr-bugfixing
timestamp: Thu 2010-01-21 13:10:34 +0000
message:
BUG#46364 MyISAM transbuffer problems (NTM problem)
It is well-known that due to concurrency issues, a slave can become
inconsistent when a transaction contains updates to both transaction and
non-transactional tables.
In a nutshell, the current code-base tries to preserve causality among the
statements by writing non-transactional statements to the txn-cache which
is flushed upon commit. However, modifications done to non-transactional
tables on behalf of a transaction become immediately visible to other
connections but may not immediately get into the binary log and therefore
consistency may be broken.
In general, it is impossible to automatically detect causality/dependency
among statements by just analyzing the statements sent to the server. This
happen because dependency may be hidden in the application code and it is
necessary to know a priori all the statements processed in the context of
a transaction such as in a procedure. Moreover, even for the few cases that
we could automatically address in the server, the computation effort
required could make the approach infeasible.
So, in this patch we introduce the option
- "--binlog-direct-non-transactional-updates" that can be used to bypass
the current behavior in order to write directly to binary log statements
that change non-transactional tables.
Besides, it is used to enable the WL#2687 which is disabled by default.
Non-transactional updates that take place inside a transaction present problems
for logging because they are visible to other clients before the transaction
is committed, and they are not rolled back even if the transaction is rolled
back. It is not always possible to log correctly in statement format when both
transactional and non-transactional tables are used in the same transaction.
In the current patch, we ensure that such scenario is completely safe under the
ROW and MIXED modes.
Slave does not correctly handle "expected errors" leading to inconsistencies
between the mater and slave. Specifically, when a statement changes both
transactional and non-transactional tables, the transactional changes are
automatically rolled back on the master but the slave ignores the error and
does not roll them back thus leading to inconsistencies.
To fix the problem, we automatically roll back a statement that fails on
the slave but note that the transaction is not rolled back unless a "rollback"
command is in the relay log file.
binlog
Mixing transactional (T) and non-transactional (N) tables on behalf of a
transaction may lead to inconsistencies among masters and slaves in STATEMENT
mode. The problem stems from the fact that although modifications done to
non-transactional tables on behalf of a transaction become immediately visible
to other connections they do not immediately get to the binary log and therefore
consistency is broken. Although there may be issues in mixing T and M tables in
STATEMENT mode, there are safe combinations that clients find useful.
In this bug, we fix the following issue. Mixing N and T tables in multi-level
(e.g. a statement that fires a trigger) or multi-table table statements (e.g.
update t1, t2...) were not handled correctly. In such cases, it was not possible
to distinguish when a T table was updated if the sequence of changes was N and T.
In a nutshell, just the flag "modified_non_trans_table" was not enough to reflect
that both a N and T tables were changed. To circumvent this issue, we check if an
engine is registered in the handler's list and changed something which means that
a T table was modified.
Check WL 2687 for a full-fledged patch that will make the use of either the MIXED or
ROW modes completely safe.