The code in best_access_path() uses PREV_BITS(uint, N) to
compute a bitmap of all keyparts: {keypart0, ... keypart{N-1}).
The problem is that PREV_BITS($type, N) macro code can't handle the case
when N=<number of bits in $type).
Also, why use PREV_BITS(uint, ...) for key part map computations when
we could have used PREV_BITS(key_part_map) ?
Fixed both:
- Change PREV_BITS(type, N) to handle any N in [0; n_bits(type)].
- Change PREV_BITS() to use key_part_map when computing key_part_map bitmaps.
When a derived table which has distinct values and BLOB fields is
materialized, an index is created over all columns to ensure only
unique values are placed to the result.
This index is created in a special mode HA_UNIQUE_HASH to support BLOBs.
Later the optimizer may incorrectly choose this index to retrieve values
from the derived table, although such type of index cannot be used
for data retrieval.
This commit excludes HA_UNIQUE_HASH indexes from adding to
`JOIN::keyuse` array thus preventing their subsequent usage for
data retrieval
Assertion failure has happened due to this scenario:
A query was ran with optimizer_join_limit_pref_ratio=1.
The query had "ORDER BY t1.col LIMIT N".
The optimizer set join->limit_shortcut_applicable=1.
Then, table t1 was marked as constant.
The code in choose_query_plan() still set join->limit_optimization_mode=1
which caused the optimizer to only consider t1 as the first non-const table.
But t1 was already put into the join prefix as the constant table.
The optimizer couldn't produce any join order at all and crashed.
Fixed by not searching for shortcut plan if ORDER BY table is a constant.
We will not try to do sorting anyway in this case (and LIMIT short-cutting
will be done for any join order).
(Variant 2: only allow rewrite for ref(const))
make_join_select() has a "ref_to_range" rewrite: it would rewrite
any ref access to a range access on the same index if the latter uses
more keyparts.
It seems, he initial intent of this was to fix poor query plan choice
in cases like
t.keypart1=const AND t.keypart2 < 'foo'
Due to deficiency in cost model, ref access could be picked while range
would enumerate fewer rows and be cheaper.
However, the condition also forces a rewrite in cases like:
t.keypart1=prev_table.col AND t.keypart1<='foo' AND t.keypart2<'bar'
Here, it can be that
* keypart1=prev_table.col is highly selective
* (keypart1, keypart2) <= ('foo', 'bar') is not at all selective.
Still, the rewrite would be made and poor query plan chosen.
Fixed this by only doing the rewrite if ref access was ref(const)
so we can be certain that quick select also used these restrictions
and will scan a subset of rows that ref access would scan.
Pre-11.0 variant:
1. In recompute_join_cost_with_limit(), add an assertion that that
partial_join_cost >= 0.0.
2. best_extension_by_limited_search() subtracts COST_EPS from
join->best_read. But it is not subtracted from
join->positions[0].read_time, add it back.
2. We could get very small negative partial_join_cost due to rounding
errors. For fraction=1.0, we were computing essentially this (denote
as EXPR-1):
$row_read_cost + $where_cost - ($row_read_cost + $where_cost)
which should compute to 0.
But the computation was done in the following order (left-to-right):
EXPR-2:
($row_read_cost + $where_cost) - $row_read_cost - $where_cost
this produced a value of -1.1102230246251565e-16 due to a rounding
error. Change the computation use EXPR-1 instead of EXPR-2.
optimize_straight_join and best_extension_by_limited_search()
use 0.001 to make choice between plans with identical cost deterministic.
Use COST_EPS instead of 0.001, like it's done in newer versions.
Variant for 11.2+:
In recompute_join_cost_with_limit(), do not subtract the cost of checking
the WHERE:
pos->records_read* WHERE_COST_THD(join->thd)
It is already included in pos->read_time.
Also added comments about difference between this fix and the pre-11.2
variant.
Stop skipping const items when selecting but skip them when storing
their results to spider row to avoid storing in mismatching temporary
table fields.
Skip auxiliary fields in SELECTing, and do not store
the (non-existing) results to the corresponding temporary table
accordingly.
When there are BOTH auxiliary fields AND const items in the auxiliary
field items, do not use the spider GBH. This is a rare occasion if it
happens at all and not worth the added complexity to cover it.
Use the original item (item_ptr) in constructing GROUP BY and ORDER
BY, which also means using item->name instead of field->field_name as
aliases in constructing SELECT items. This fixes spurious regressions
caused by the above changes in some tests using ORDER BY, such as
mdev_24517.test. As a by-product, this also fixes MDEV-29546.
Therefore we update mdev_29008.test to include the MDEV-29546 case.
Field_blob::store() has special code for GROUP_CONCAT temporary table
(to store blob values in Blob_mem_storage - this prevents them
from being freed/overwritten when a next row is read).
Field_geom and Field_blob_compressed inherit from Field_blob but they
have their own ::store() method without this special Blob_mem_storage
support.
Considering that non-grouping CONCAT() of such fields converts
them to plain BLOB, let's do the same for GROUP_CONCAT. To do it,
Item_func_group_concat::setup will signal that it's creating
a temporary table for GROUP_CONCAT, and Field_blog::make_new_field()
override will create base Field_blob when under group concat.
Search conditions were evaluated using val_int(), which was wrong.
Fixing the code to use val_bool() instead.
Details:
- Adding a new item_base_t::IS_COND flag which marks Items used
as <search condition> in WHERE, HAVING, JOIN ON, CASE WHEN clauses.
The flag is at the parse time.
These expressions must be evaluated using val_bool() rather than val_int().
Note, the optimizer creates more Items which are used as search conditions.
Most of these items are not marked with IS_COND yet. This is OK for now,
but eventually these Items can also be fixed to have the flag.
- Adding a method Item::is_cond() which tests if the Item has the IS_COND flag.
- Implementing Item_cache_bool. It evaluates the cached expression using
val_bool() rather than val_int().
Overriding Type_handler_bool::Item_get_cache() to create Item_cache_bool.
- Implementing Item::save_bool_in_field(). It uses val_bool() rather than
val_int() to evaluate the expression.
- Implementing Type_handler_bool::Item_save_in_field()
using Item::save_bool_in_field().
- Fixing all Item_bool_func descendants to implement a virtual val_bool()
rather than a virtual val_int().
- To find places where val_int() should be fixed to val_bool(), a few
DBUG_ASSERT(!is_cond()) where added into val_int() implementations
of selected (most frequent) classes:
Item_field
Item_str_func
Item_datefunc
Item_timefunc
Item_datetimefunc
Item_cache_bool
Item_bool_func
Item_func_hybrid_field_type
Item_basic_constant descendants
- Fixing all places where DBUG_ASSERT() happened during an "mtr" run
to use val_bool() instead of val_int().
A call to
dbug_print_join_prefix(join_positions, idx, s)
returns a const char* ponter to string with current join prefix,
including the table being added to it.
(Variant 4, with @@optimizer_adjust_secondary_key_costs, reuse in two
places, and conditions are replaced with equivalent simpler forms in two more)
In best_access_path(), ReuseRangeEstimateForRef-3, the check
for whether
"all used key_part_i used key_part_i=const"
was incorrect: it may produced a "NO" answer for cases when we
had:
key_part1= const // some key parts are usable
key_part2= value_not_in_join_prefix //present but unusable
key_part3= non_const_value // unusable due to gap in key parts.
This caused the optimizer to fail to apply ReuseRangeEstimateForRef
heuristics. The consequence is poor query plan choice when the index
in question has very skewed data distribution.
The fix is enabled if its @@optimizer_adjust_secondary_key_costs flag
is set.
The memory leak happened on second execution of a prepared statement
that runs UPDATE statement with correlated subquery in right hand side of
the SET clause. In this case, invocation of the method
table->stat_records()
could return the zero value that results in going into the 'if' branch
that handles impossible where condition. The issue is that this condition
branch missed saving of leaf tables that has to be performed as first
condition optimization activity. Later the PS statement memory root
is marked as read only on finishing first time execution of the prepared
statement. Next time the same statement is executed it hits the assertion
on attempt to allocate a memory on the PS memory root marked as read only.
This memory allocation takes place by the sequence of the following
invocations:
Prepared_statement::execute
mysql_execute_command
Sql_cmd_dml::execute
Sql_cmd_update::execute_inner
Sql_cmd_update::update_single_table
st_select_lex::save_leaf_tables
List<TABLE_LIST>::push_back
To fix the issue, add the flag SELECT_LEX::leaf_tables_saved to control
whether the method SELECT_LEX::save_leaf_tables() has to be called or
it has been already invoked and no more invocation required.
Similar issue could take place on running the DELETE statement with
the LIMIT clause in PS/SP mode. The reason of memory leak is the same as for
UPDATE case and be fixed in the same way.
(Variant 2b: call greedy_search() twice, correct handling for limited
search_depth)
Modify the join optimizer to specifically try to produce join orders that
can short-cut their execution for ORDER BY..LIMIT clause.
The optimization is controlled by @@optimizer_join_limit_pref_ratio.
Default value 0 means don't construct short-cutting join orders.
Other value means construct short-cutting join order, and prefer it only
if it promises speedup of more than #value times.
In Optimizer Trace, look for these names:
* join_limit_shortcut_is_applicable
* join_limit_shortcut_plan_search
* join_limit_shortcut_choice
Discovered this while working on MDEV-34720: test_if_cheaper_ordering()
uses rec_per_key, while the original estimate for the access method
is produced in best_access_path() by using actual_rec_per_key().
Make test_if_cheaper_ordering() also use actual_rec_per_key().
Also make several getter function "const" to make this compile.
Also adjusted the testcase to handle this (the change backported from
11.0)
Before this patch the crash occured when a single row dataset is used and
Item::remove_eq_conds() is called for HAVING. This function is not supposed
to be called after the elimination of multiple equalities.
To fix this problem instead of Item::remove_eq_conds() Item::val_int() is
used. In this case the optimizer tries to evaluate the condition for the
single row dataset and discovers impossible HAVING immediately. So, the
execution phase is skipped.
Approved by Igor Babaev <igor@maridb.com>
New runtime diagnostic introduced with MDEV-34490 has detected
that `Item_int_with_ref` incorrectly returns an instance of its ancestor
class `Item_int`. This commit fixes that.
In addition, this commit reverts a part of the diagnostic related
to `clone_item()` checks. As it turned out, `clone_item()` is not required
to return an object of the same class as the cloned one. For example,
look at `Item_param::clone_item()`: it can return objects of `Item_null`,
`Item_int`, `Item_string`, etc, depending on the object state.
So the runtime type diagnostic is not applicable to `clone_item()` and
is disabled with this commit.
As the similar diagnostic failures are expected to appear again
in the future, this commit introduces a new test file in the main suite:
item_types.test, and new test cases may be added to this file
Reviewer: Oleksandr Byelkin <sanja@mariadb.com>