- Adding a helper class Sec6 to store (neg,seconds,microseconds)
- Adding a helper class VSec6 (Sec6 with a flag for "IS NULL")
- Wrapping related functions as methods of Sec6;
* number_to_datetime()
* number_to_time()
* my_decimal2seconds()
* Item::get_seconds()
* A big piece of code in Item_func_sec_to_time::get_date()
- Using the new classes in places where second-to-temporal
conversion takes place:
* Field_timestamp::store(double)
* Field_timestamp::store(longlong)
* Field_timestamp_with_dec::store_decimal(my_decimal)
* Field_temporal_with_date::store(double)
* Field_temporal_with_date::store(longlong)
* Field_time::store(double)
* Field_time::store(longlong)
* Field_time::store_decimal(my_decimal)
* Field_temporal_with_date::store_decimal(my_decimal)
* get_interval_value()
* Item_func_sec_to_time::get_date()
* Item_func_from_unixtime::get_date()
* Item_func_maketime::get_date()
This change simplifies these methods and functions a lot.
- Warnings are now sent at VSec6 initialization time, when the source
data is available in its original data type representation.
If Sec6::to_time() or Sec6::to_datetime() truncate data again during
conversion to MYSQL_TIME, they send warnings, but only if no warnings
were sent during VSec6 initialization. This helps prevents double warnings.
The call for val_str() in Item_func_sec_to_time::get_date() is not
needed any more, so it's removed. This change actually fixes the problem.
As a good effect, FROM_UNIXTIME() and MAKETIME() now also send warnings
in case if the seconds arguments is out of range. Previously these
functions returned NULL silently.
- Splitting the code in the global function make_truncated_value_warning()
into a number of methods THD::raise_warning_xxxx().
This was needed to reuse the logic that chooses between:
* ER_TRUNCATED_WRONG_VALUE
* ER_WRONG_VALUE
* ER_TRUNCATED_WRONG_VALUE_FOR_FIELD
for non-temporal data types (Sec6).
- Removing:
* Item::get_seconds()
* number_to_time_with_warn()
as this code now resides inside methods of Sec6.
- Cleanup (changes that are not directly related to the fix):
* Removing calls for field_name_or_null() and passing NULL instead
in Item_func_hybrid_field_type::get_date_from_{int|real}_op,
because Item_func_hybrid_field_type::field_name_or_null()
always returns NULL
* Replacing a number of calls for make_truncated_value_warning()
to calls for THD::raise_warning_xxx(). In these places
we know that the execution went through a certain
branch of make_truncated_value_warning(),
(e.g. the exact error code is known, or field name is always NULL,
or field name is always not-NULL). So calls for the entire
make_truncated_value_warning() after splitting are not necessary.
Adding new methods:
- virtual void Type_handler::Column_definition_reuse_fix_attributes()
according to the MDEV description
- virtual uint32 Field::character_octet_length()
To simplify handling of Column_definition::length for
TEXT and VARCHAR columns (with and without compression).
for the small InnoDB table
This bug was introduced by the patch 6c414fcf89.
The patch has not taken into account that some objects of the Field_* types
are created only for TABLE_SHARE and the field 'table' is set to NULL
for them. In particular such are objects created to store statistical
min/max values for columns.
NULL values when there is no DEFAULT
Copy and inplace algorithm works similarly for
NULL to NOT NULL conversion for the following cases:
(1) strict sql mode - Should give error.
(2) non-strict sql mode - Should give warnings alone
(3) alter ignore table command. - Should give warnings alone.
restore its original semantics by allowing only columns
in the write_set. Generated columns work around the assert
by temporarily updating the write_set.
Now the boolean data type is preserved in hybrid functions and MIN/MAX,
so COALESCE(bool_expr,bool_expr) and MAX(bool_expr) are correctly
detected by JSON_OBJECT() as being boolean rather than numeric expressions.
- Adding Type_handler::traditional_merge_field_type()
- Removing real_type_to_type(), field_merge_type()
- Making Type_handler_var_string to merge as VARCHAR
- Additionally, fixing Field_string::print() to add the "/*old*/"
comment into the data type for the old VARCHAR.
This is similar to what MDEV-8267 earlier did for old DECIMAL.
- Adding tests
Detailed: changes:
1. Moving Field specific code into new methods on Field:
- Field *Field::create_tmp_field(...)
- virtual void init_for_tmp_table(...)
2. Removing virtual Item::create_tmp_field().
Adding instead a new virtual method Item::create_tmp_field_ex().
Note, a virtual create_tmp_field() still exists, but only for Item_sum.
This resembles 10.0 code structure. Perhaps create_tmp_field() should
be removed from Item_sum and Item_sum descendants should override
create_tmp_field_ex() directly. This can be done in a separate commit.
3. Adding helper classes Tmp_field_src and Tmp_field_param,
to make the API for Item::create_tmp_field_ex() smaller
and easier to extend in the future.
4. Decomposing the public function create_tmp_field() into
virtual implementations for Item and a number of its descendants:
- Item_basic_value
- Item_sp_variable
- Item_name_const
- Item_result_field
- Item_field
- Item_ref
- Item_type_holder
- Item_row
- Item_func_sp
- Item_func_user_var
- Item_sum
- Item_sum_field
- Item_proc
5. Adding DBUG_ASSERT-only virtual implementations for
Item types that should not appear in create_tmp_table_ex(),
for easier debugging:
- Item_nodeset_func
- Item_nodeset_to_const_comparator
- Item_null_result
- Item_copy
- Item_ident_for_show
- Item_user_var_as_out_param
6. Moving public function create_tmp_field_from_field()
as a method to Item_field.
7. Removing Item::set_result_field(). It's not needed any more.
8. Cleanup: Removing the enum value "EXPR_CACHE_ITEM",
as it's not used for a very long time.
Original problem reported by Wlad: re-compilation of 10.3 on top of 10.2
build would cache undefined HAVE_ISINF from 10.2, whereas it is expected
to be 1 in 10.3.
std::isinf() seem to be available on all supported platforms.
Compressed blob columns didn't accept data at their capacity. E.g. storing
255 bytes to TINYBLOB results in "Data too long" error.
Now it is allowed assuming compression method was able to produce shorter
string (so that both metadata and compressed data fits blob) and
column_compression_threshold is lower than blob.
If no compression was performed, we still have to reserve additional byte
for metadata and thus we perform normal data truncation and return it's
status.
Unexpected data truncation may occur when storing data to compressed blob
column having multi byte variable length character sets.
The reason was incorrect number of characters limit was enforced for
blobs.
Problem:
The logic in store_column_type() with a switch on field type was
hard to follow. The part for MEDIUMINT (MYSQL_TYPE_INT24) was not correct.
It erroneously calculated the precision of MEDIUMINT UNSIGNED
as 7 instead of 8.
A similar hard-to-follow switch doing some type specific calculations
resided in adjust_max_effective_column_length(). It was also wrong for
MEDIUMINT (reported as a separate issue in MDEV-15946).
Solution:
1. Introducing a new class Information_schema_numeric_attributes
2. Adding a new virtual method Field::information_schema_numeric_attributes()
3. Splitting the logic in store_column_type() into virtual
implementations of information_schema_numeric_attributes().
4. In order to avoid adding duplicate code for the integer data types,
adding a new virtual method Field_int::numeric_precision(),
which returns the number of digits.
Additional changes:
1. Adding the "const" qualifier to Field::max_display_length()
2. Moving the code from adjust_max_effective_column_length()
directly to Field::max_display_length().
There was no any sense to have two implementations:
- a set of wrong virtual implementations for Field_xxx::max_display_length()
- additional code in adjust_max_effective_column_length() fixing
bad results of Field_xxx::max_display_length()
This change is safe:
- The code using Field::max_display_length()
in field.cc, sql_show.cc, sql_type.cc is not affected.
- The code in rpl_utility.cc is also not affected.
See a new DBUG_ASSSERT and new comments explaining why.
In the new reduction, Field_xxx::max_display_length() returns
correct results for all integer types (except MEDIUMINT, see below).
Putting implementations of numeric_precision() and max_display_length()
near each other in field.h made the logic much clearer and thus
helped to reveal bad results for Field_medium::max_display_length(),
which returns 9 instead of 8 for signed MEDIUMINT fields.
This problem will be addressed separately (MDEV-15946).
Note, this change is also useful for pluggable data types (see MDEV-4912),
as now a user defined Field_xxx has a way to control what's returned
in INFORMATION_SCHEMA.COLUMNS.NUMERIC_PRECISION and
INFORMATION_SCHEMA.COLUMNS.NUMERIC_SCALE by implementing
a desired behavior in Field_xxx::information_schema_numeric_attributes().
Character set safe truncation is done when storing non-empty string in
VARCHAR(0) COMPRESSED column, so that string becomes empty. The code
didn't expect empty string after truncation.
Fixed by moving empty string check after truncation.
Renaming methods:
- Field::make_field(Send_field*) to make_send_field(..)
- Item::make_field(THD *,Send_field *) to make_send_field(..)
- Item::init_make_field(Send_field *, enum_field_type) to init_make_send_field(..)
These names looked similar to other functions that are used
for a very different purpose (creating Field instances):
- Public function "Field * make_field(..)"
- Method "Field *Column_defitinion::make_field(..)"
The rename makes it's easier to search the code using "grep".
- Adding class Field_int as a common
parent for Field_{longlong|long|short|medium|tiny}
- Moving store_decimal(), val_decimal(), get_date(), store_time_dec(),
get_date(), val_bool() from Field_num to Field_int
- Adding Field_int::val_str_from_long() and reusing it in
Field_tiny::val_str(), Field_short::val_str(), Field_medium::val_str()
and Field_long::val_str(). This removes a good amount of duplicate code
- Adding "const" qualifier to "virtual bool Field::optimize_range()".
- Adding a new virtual method Field::load_data_set_no_data().
- Overriding Field_timestamp::load_data_set_no_data() and moving
the TIMESTAMP specific code there.
- Overriding Field_geom::load_data_set_no_data() and implementing
GEOMETRY specific behavior, to prevent writing empty strings
when the loaded file ends unexpectedly. This fixes the bug.
- Adding a new test gis-loaddaata.test.
- The test in loaddata.test for CHAR was added simply to record behavior.
The CHAR data type did not change its behaviour (only GEOMRYRY did).
- Additionally, moving duplicate code into a new method
Field::load_data_set_value() and reusing it in three places.
The problem was that Item_func_hybrid_field_type::get_date() did not
convert the result to the correct data type, so MYSQL_TIME::time_type
of the get_date() result could be not in sync with field_type().
Changes:
1. Adding two new classes Datetime and Date to store MYSQL_TIMESTAMP_DATETIME
and MYSQL_TIMESTAMP_DATE values respectively
(in addition to earlier added class Time, for MYSQL_TIMESTAMP_TIME values).
2. Adding Item_func_hybrid_field_type::time_op().
It performs the operation using TIME representation,
and always returns a MYSQL_TIME value with time_type=MYSQL_TIMESTAMP_TIME.
Implementing time_op() for all affected children classes.
3. Fixing all implementations of date_op() to perform the operation
using strictly DATETIME representation. Now they always return a MYSQL_TIME
value with time_type=MYSQL_TIMESTAMP_{DATE|DATETIME},
according to the result data type.
4. Removing assignment of ltime.time_type to mysql_timestamp_type()
from all val_xxx_from_date_op(), because now date_op() makes sure
to return a proper MYSQL_TIME value with a good time_type (and other member)
5. Adding Item_func_hybrid_field_type::val_xxx_from_time_op().
6. Overriding Type_handler_time_common::Item_func_hybrid_field_type_val_xxx()
to call val_xxx_from_time_op() instead of val_xxx_from_date_op().
7. Modified Item_func::get_arg0_date() to return strictly a TIME value
if TIME_TIME_ONLY is passed, or return strictly a DATETIME value otherwise.
If args[0] returned a value of a different temporal type,
(for example a TIME value when TIME_TIME_ONLY was not passed,
or a DATETIME value when TIME_TIME_ONLY was passed), the conversion
is automatically applied.
Earlier, get_arg0_date() did not guarantee a result in
accordance to TIME_TIME_ONLY flag.