A reference to a CTE may occur not in the master of the CTE
specification. In this case if the reference to the CTE is
the first one the specification should be detached from its
master and attached to the referencing select.
Also fixed the TYPE column in the lines of the EXPLAIN output
created for CTE tables.
- Added sql/mariadb.h file that should be included first by files in sql
directory, if sql_plugin.h is not used (sql_plugin.h adds SHOW variables
that must be done before my_global.h is included)
- Removed a lot of include my_global.h from include files
- Removed include's of some files that my_global.h automatically includes
- Removed duplicated include's of my_sys.h
- Replaced include my_config.h with my_global.h
It allows to push conditions into derived with window functions not
only in the cases when the window specifications of these window
functions use the same partition, but also in the cases when the window
functions use partitions that share only some fields. In these
cases only the conditions over the common fields are pushed.
with window functions (mdev-10855).
This patch just modified the function pushdown_cond_for_derived()
to support this feature.
Some test cases demonstrating this optimization were added to
derived_cond_pushdown.test.
"Optimization for equi-joins of derived tables with GROUP BY"
should be considered rather as a 'proof of concept'.
The task itself is targeted at an optimization that employs re-writing
equi-joins with grouping derived tables / views into lateral
derived tables. Here's an example of such transformation:
select t1.a,t.max,t.min
from t1 [left] join
(select a, max(t2.b) max, min(t2.b) min from t2
group by t2.a) as t
on t1.a=t.a;
=>
select t1.a,tl.max,tl.min
from t1 [left] join
lateral (select a, max(t2.b) max, min(t2.b) min from t2
where t1.a=t2.a) as t
on 1=1;
The transformation pushes the equi-join condition t1.a=t.a into the
derived table making it dependent on table t1. It means that for
every row from t1 a new derived table must be filled out. However
the size of any of these derived tables is just a fraction of the
original derived table t. One could say that transformation 'splits'
the rows used for the GROUP BY operation into separate groups
performing aggregation for a group only in the case when there is
a match for the current row of t1.
Apparently the transformation may produce a query with a better
performance only in the case when
- the GROUP BY list refers only to fields returned by the derived table
- there is an index I on one of the tables T used in FROM list of
the specification of the derived table whose prefix covers the
the fields from the proper beginning of the GROUP BY list or
fields that are equal to those fields.
Whether the result of the re-writing can be executed faster depends
on many factors:
- the size of the original derived table
- the size of the table T
- whether the index I is clustering for table T
- whether the index I fully covers the GROUP BY list.
This patch only tries to improve the chosen execution plan using
this transformation. It tries to do it only when the chosen
plan reaches the derived table by a key whose prefix covers
all the fields of the derived table produced by the fields of
the table T from the GROUP BY list.
The code of the patch does not evaluates the cost of the improved
plan. If certain conditions are met the transformation is applied.
This patch fills in a serious flaw in the
code that supports condition pushdown into
materialized views / derived tables.
If a predicate happened to contain a reference
to a mergeable view / derived table and it does
not depended directly on the target materialized
view / derived table then the predicate was not
considered as a subject to pusdown to this view
/ derived table.
This is another attempt to fix the bug mdev-12992.
This patch introduces st_select_lex::context_analysis_place for
the place in SELECT where context analysis is currently performed.
It's similar to st_select_lex::parsing_place, but it is used at
the preparation stage.
Significantly reduce the amount of InnoDB, XtraDB and Mariabackup
code changes by defining pfs_os_file_t as something that is
transparently compatible with os_file_t.
Introducing a new class Type_holder (used internally in sql_union.cc),
to reuse exactly the same data type attribute aggregation Type_handler API
for hybrid functions and UNION.
This fixes a number of bugs in UNION:
- MDEV-9495 Wrong field type for a UNION of a signed and an unsigned INT expression
- MDEV-9497 UNION and COALESCE produce different field types for DECIMAL+INT
- MDEV-12594 UNION between fixed length double columns does not always preserve scale
- MDEV-12595 UNION converts INT to BIGINT
- MDEV-12599 UNION is not symmetric when mixing INT and CHAR
Details:
- sql_union.cc: Reusing attribute aggregation for UNION.
Adding new methods:
* st_select_lex_unit::join_union_type_handlers()
* st_select_lex_unit::join_union_type_attributes()
* st_select_lex_unit::join_union_item_types()
Removing the old join_types()-based code.
- Changing Type_handler::Item_hybrid_func_fix_attributes()
to accept "name", Type_handler_hybrid_field_type, Type_all_attributes
as three separate parameters instead of a single Item_hybrid_func parameter,
to make it possible to pass both Item_hybrid_func and Type_holder.
- Moving the former special GEOMETRY and ENUM/SET attribute aggregation code
from Item_type_holder::join_types() to
* Type_handler_typelib::Item_hybrid_func_fix_attributes().
* Type_handler_geometry::Item_hybrid_func_fix_attrubutes().
This makes GEOMETRY/ENUM/SET symmetric with all other data types
(from the UNION point of view).
Removing Item_type_holder::join_types() and Item_type_holder::get_full_info().
- Adding new methods into Type_all_attributes:
* Type_all_attributes::set_geometry_type() and
Item_hybrid_func::set_geometry_type().
* Adding Type_all_attributes::get_typelib().
* Adding Type_all_attributes::set_typelib().
- Adding Type_handler_typelib as a common parent for
Type_handler_enum and Type_handler_set, to avoid code duplication: they have
already had two common methods, and we're adding one more shared method.
- Adding Type_all_attributes::set_maybe_null(), as some type handlers
may want to set maybe_null (e.g. Type_handler_geometry) during data type
attribute aggregation.
- Changing Type_geometry_attributes() to accept Type_handler
and Type_all_attributes as two separate parameters, instead
of a single Item parameter, to make it possible to pass Type_holder.
- Adding Item_args::add_argument().
- Moving Item_args::alloc_arguments() from "protected" to "public".
- Moving Item_type_holder::Item_type_holder() from item.cc to item.h, as
now it's very simple.
Btw, this constructor should probably be eventually removed.
It's now used only in sql_show.cc, which could be modified to use
Item_return_decimal (for symmetry with Item_return_xxx created for all
other data types). Or, another option: remove all Item_return_xxx and
use Item_type_holder for all data types instead.
- storage/tokudb/mysql-test/tokudb/r/type_float.result
Recording new results (MDEV-12594).
- mysql-test/r/cte_recursive.result
Recording new results (MDEV-9497)
- mysql-test/r/subselect*.result
Recording new results (MDEV-12595)
- mysql-test/r/metadata.result
Recording new results (MDEV-9495)
- mysql-test/r/temp_table.result
Recording new results (MDEV-12594)
- mysql-test/r/type_float.result
Recording new results (MDEV-12594)
At some conditions the function opt_sum_query() can apply MIN/MAX
optimizations to to Item_sum objects of a select These optimizations
becomes invalid if this select is the subquery of an IN subquery
predicate that is converted to a EXISTS subquery. Thus in this case
the MIX/MAX optimizations that have been applied in opt_sum_query()
must be rolled back.
This bug appeared in 5.3 when the code for the cost base choice between
materialization and in-to-exists transformation of non-correlated
IN subqueries was introduced. Before this code in-to-exists
transformations were always performed before the call of opt_sum_query().
- SETVAL(sequence_name, next_value, is_used, round)
- ALTER SEQUENCE, including RESTART WITH
Other things:
- Added handler::extra() option HA_EXTRA_PREPARE_FOR_ALTER_TABLE to signal
ha_sequence() that it should allow write_row statments.
- ALTER ONLINE TABLE now works with SEQUENCE:s