If two high priority threads have lock conflict, we look at the
order of these transactions and honor the earlier transaction.
for_locking parameter in lock_rec_has_to_wait() has become
obsolete and it is now removed from the code .
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
The rather recent thd_need_ordering_with() function does not take
high priority transactions' order in consideration. Chaged this
funtion to compare also transaction seqnos and favor earlier transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
when assigning the cached item to the Item_cache for the first time
make sure to use Item_cache::setup(), not Item_cache::store().
Because the former copies the metadata (and allocates memory, in case
of Item_cache_row), and Item_cache::decimal must be set for
comparisons to work correctly.
The problem is that if table definition cache (TDC) is full of real tables
which are in tables cache, view definition can not stay there so will be
removed by its own underlying tables.
In situation above old mechanism of detection matching definition in PS
and current version always require reprepare and so prevent executing
the PS.
One work around is to increase TDC, other - improve version check for
views/triggers (which is done here). Now in suspicious cases we check:
- timestamp (microseconds) of the view to be sure that version really
have changed;
- time (microseconds) of creation of a trigger related to time
(microseconds) of statement preparation.
In commit 28325b0863
a compile-time option was introduced to disable the macros
DBUG_ENTER and DBUG_RETURN or DBUG_VOID_RETURN.
The parameter name WITH_DBUG_TRACE would hint that it also
covers DBUG_PRINT statements. Let us do that: WITH_DBUG_TRACE=OFF
shall disable DBUG_PRINT() as well.
A few InnoDB recovery tests used to check that some output from
DBUG_PRINT("ib_log", ...) is present. We can live without those checks.
Reviewed by: Vladislav Vaintroub
Making changes to wsrep_mysqld.h causes large parts of server code to
be recompiled. The reason is that wsrep_mysqld.h is included by
sql_class.h, even tough very little of wsrep_mysqld.h is needed in
sql_class.h. This commit introduces a new header file, wsrep_on.h,
which is meant to be included from sql_class.h, and contains only
macros and variable declarations used to determine whether wsrep is
enabled.
Also, header wsrep.h should only contain definitions that are also
used outside of sql/. Therefore, move WSREP_TO_ISOLATION* and
WSREP_SYNC_WAIT macros to wsrep_mysqld.h.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
TIMESTAMP columns were compared as strings in ALL/ANY comparison,
which did not work well near DST time change.
Changing ALL/ANY comparison to use "Native" representation to compare
TIMESTAMP columns, like simple comparison does.
MDEV-21810 MBR: Unexpected "Unsafe statement" warning for unsafe IODKU
MDEV-17614 fixes to replication unsafety for INSERT ON DUP KEY UPDATE
on two or more unique key table left a flaw. The fixes checked the
safety condition per each inserted record with the idea to catch a user-created
value to an autoincrement column and when that succeeds the autoincrement column
would become the source of unsafety too.
It was not expected that after a duplicate error the next record's
write_set may become different and the unsafe decision for that
specific record will be computed to screw the Query's binlogging
state and when @@binlog_format is MIXED nothing gets bin-logged.
This case has been already fixed in 10.5.2 by 91ab42a823 that
relocated/optimized THD::decide_logging_format_low() out of the record insert
loop. The safety decision is computed once and at the right time.
Pertinent parts of the commit are cherry-picked.
Also a spurious warning about unsafety is removed when MIXED
@@binlog_format; original MDEV-17614 test result corrected.
The original test of MDEV-17614 is extended and made more readable.
Problem:
========
If a primary is shutdown during an active semi-sync connection
during the period when the primary is awaiting an ACK, the primary
hard kills the active communication thread and does not ensure the
transaction was received by a replica. This can lead to an
inconsistent replication state.
Solution:
========
During shutdown, the primary should wait for an ACK or timeout
before hard killing a thread which is awaiting a communication. We
extend the `SHUTDOWN WAIT FOR SLAVES` logic to identify and ignore
any threads waiting for a semi-sync ACK in phase 1. Then, before
stopping the ack receiver thread, the shutdown is delayed until all
waiting semi-sync connections receive an ACK or time out. The
connections are then killed in phase 2.
Notes:
1) There remains an unresolved corner case that affects this
patch. MDEV-28141: Slave crashes with Packets out of order when
connecting to a shutting down master. Specifically, If a slave is
connecting to a master which is actively shutting down, the slave
can crash with a "Packets out of order" assertion error. To get
around this issue in the MTR tests, the primary will wait a small
amount of time before phase 1 killing threads to let the replicas
safely stop (if applicable).
2) This patch also fixes MDEV-28114: Semi-sync Master ACK Receiver
Thread Can Error on COM_QUIT
Reviewed By
============
Andrei Elkin <andrei.elkin@mariadb.com>
Handling BF abort for prepared statement execution so that EXECUTE processing will continue
until parameter setup is complete, before BF abort bails out the statement execution.
THD class has new boolean member: wsrep_delayed_BF_abort, which is set if BF abort is observed
in do_command() right after reading client's packet, and if the client has sent PS execute command.
In such case, the deadlock error is not returned immediately back to client, but the PS execution
will be started. However, the PS execution loop, will now check if wsrep_delayed_BF_abort is set, and
stop the PS execution after the type information has been assigned for the PS.
With this, the PS protocol type information, which is present in the first PS EXECUTE command, is not lost
even if the first PS EXECUTE command was marked to abort.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
extra2_read_len resolved by keeping the implementation
in sql/table.cc by exposed it for use by ha_partition.cc
Remove identical implementation in unireg.h
(ref: bfed2c7d57)
Problem:
Parse-time conversion from binary to tricky character sets like utf32
produced ill-formed strings. So, later a chash happened in debug builds,
or a wrong SHOW CREATE TABLE was returned in release builds.
Fix:
1. Backporting a few methods from 10.3:
- THD::check_string_for_wellformedness()
- THD::convert_string() overloads
- THD::make_text_string_connection()
2. Adding a new method THD::reinterpret_string_from_binary(),
which makes sure to either returns a well-formed string
(optionally prepending with zero bytes), or returns an error.
The first step for deprecating innodb_autoinc_lock_mode(see MDEV-27844) is:
- to switch statement binlog format to ROW if binlog format is MIXED and
the statement changes autoincremented fields
- issue warnings if innodb_autoinc_lock_mode == 2 and binlog format is
STATEMENT
The warning out of OPTIMIZE
Statement is unsafe because it uses a system function
was indeed counterfactual and was resulted by checking an
insufficiently strict property of lex' sql_command_flags.
Fixed with deploying an additional checking of weather
the current sql command that modifes a share->non_determinstic_insert
table is capable of generating ROW format events.
The extra check rules out the unsafety to OPTIMIZE et al, while the
existing check continues to do so to CREATE TABLE (which is
perculiarly tagged as ROW-event generative sql command).
As a side effect sql_sequence.binlog test gets corrected and
binlog_stm_unsafe_warning.test is reinforced to add up
an unsafe CREATE..SELECT test.
GCC 12 complains if a reference to an uninitialized object is
being passed to a constructor. The mysql_mutex_t, mysql_cond_t
would be initialized in the constructor body, which is executed
after the initializer list. There is no problem passing a pointer
instead of a reference. The wrapper classes do not dereference
the pointers in the constructor or destructor, so there does not
appear to be any correctness issue.
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This patch also fixes mutex locking order and unprotected
THD member accesses on bf aborting case. We try to hold
THD::LOCK_thd_data during bf aborting. Only case where it
is not possible is at wsrep_abort_transaction before
call wsrep_innobase_kill_one_trx where we take InnoDB
mutexes first and then THD::LOCK_thd_data.
This will also fix possible race condition during
close_connection and while wsrep is disconnecting
connections.
Added wsrep_bf_kill_debug test case
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
make BACKUP STAGE behave as FTWRL, desyncing and pausing the node
to prevent BF threads (appliers) from interfering with blocking stages.
This is needed because BF threads don't respect BACKUP MDL locks.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Reformulate mark_columns_used_by_index* function family in a more laconic
way:
mark_columns_used_by_index -> mark_index_columns
mark_columns_used_by_index_for_read_no_reset -> mark_index_columns_for_read
mark_columns_used_by_index_no_reset -> mark_index_columns_no_reset
static mark_index_columns -> do_mark_index_columns
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
So we are having a race condition of three of threads, resulting in a
deadlock backoff in purge, which is unexpected.
More precisely, the following happens:
T1: NOCOPY ALTER TABLE begins, and eventually it holds MDL_SHARED_NO_WRITE
lock;
T2: FLUSH TABLES begins. it sets share->tdc->flushed = true
T3: purge on a record with virtual column begins. it is going to open a
table. MDL_SHARED_READ lock is acquired therefore.
Since share->tdc->flushed is set, it waits for a TDC purge end.
T1: is going to elevate MDL LOCK to exclusive and therefore has to set
other waiters to back off.
T3: receives VICTIM status, reports a DEADLOCK, sets OT_BACKOFF_AND_RETRY
to Open_table_context::m_action
My fix is to allow opening table in purge while flushing. It is already
done the same way in other maintainance facilities like REPAIR TABLE.
Another way would be making an actual backoff, but Open_table_context
does not allow to distinguish it from other failure types, which still
seem to be unexpected. Making this would require hacking into
Open_table_context interface for no benefit, in comparison to passing
MYSQL_OPEN_IGNORE_FLUSH during table open.
The easiest way to compile and test the server with UBSAN is to run:
./BUILD/compile-pentium64-ubsan
and then run mysql-test-run.
After this commit, one should be able to run this without any UBSAN
warnings. There is still a few compiler warnings that should be fixed
at some point, but these do not expose any real bugs.
The 'special' cases where we disable, suppress or circumvent UBSAN are:
- ref10 source (as here we intentionally do some shifts that UBSAN
complains about.
- x86 version of optimized int#korr() methods. UBSAN do not like unaligned
memory access of integers. Fixed by using byte_order_generic.h when
compiling with UBSAN
- We use smaller thread stack with ASAN and UBSAN, which forced me to
disable a few tests that prints the thread stack size.
- Verifying class types does not work for shared libraries. I added
suppression in mysql-test-run.pl for this case.
- Added '#ifdef WITH_UBSAN' when using integer arithmetic where it is
safe to have overflows (two cases, in item_func.cc).
Things fixed:
- Don't left shift signed values
(byte_order_generic.h, mysqltest.c, item_sum.cc and many more)
- Don't assign not non existing values to enum variables.
- Ensure that bool and enum values are properly initialized in
constructors. This was needed as UBSAN checks that these types has
correct values when one copies an object.
(gcalc_tools.h, ha_partition.cc, item_sum.cc, partition_element.h ...)
- Ensure we do not called handler functions on unallocated objects or
deleted objects.
(events.cc, sql_acl.cc).
- Fixed bugs in Item_sp::Item_sp() where we did not call constructor
on Query_arena object.
- Fixed several cast of objects to an incompatible class!
(Item.cc, Item_buff.cc, item_timefunc.cc, opt_subselect.cc, sql_acl.cc,
sql_select.cc ...)
- Ensure we do not do integer arithmetic that causes over or underflows.
This includes also ++ and -- of integers.
(Item_func.cc, Item_strfunc.cc, item_timefunc.cc, sql_base.cc ...)
- Added JSON_VALUE_UNITIALIZED to json_value_types and ensure that
value_type is initialized to this instead of to -1, which is not a valid
enum value for json_value_types.
- Ensure we do not call memcpy() when second argument could be null.
- Fixed that Item_func_str::make_empty_result() creates an empty string
instead of a null string (safer as it ensures we do not do arithmetic
on null strings).
Other things:
- Changed struct st_position to an OBJECT and added an initialization
function to it to ensure that we do not copy or use uninitialized
members. The change to a class was also motived that we used "struct
st_position" and POSITION randomly trough the code which was
confusing.
- Notably big rewrite in sql_acl.cc to avoid using deleted objects.
- Changed in sql_partition to use '^' instead of '-'. This is safe as
the operator is either 0 or 0x8000000000000000ULL.
- Added check for select_nr < INT_MAX in JOIN::build_explain() to
avoid bug when get_select() could return NULL.
- Reordered elements in POSITION for better alignment.
- Changed sql_test.cc::print_plan() to use pointers instead of objects.
- Fixed bug in find_set() where could could execute '1 << -1'.
- Added variable have_sanitizer, used by mtr. (This variable was before
only in 10.5 and up). It can now have one of two values:
ASAN or UBSAN.
- Moved ~Archive_share() from ha_archive.cc to ha_archive.h and marked
it virtual. This was an effort to get UBSAN to work with loaded storage
engines. I kept the change as the new place is better.
- Added in CONNECT engine COLBLK::SetName(), to get around a wrong cast
in tabutil.cpp.
- Added HAVE_REPLICATION around usage of rgi_slave, to get embedded
server to compile with UBSAN. (Patch from Marko).
- Added #ifdef for powerpc64 to avoid a bug in old gcc versions related
to integer arithmetic.
Changes that should not be needed but had to be done to suppress warnings
from UBSAN:
- Added static_cast<<uint16_t>> around shift to get rid of a LOT of
compiler warnings when using UBSAN.
- Had to change some '/' of 2 base integers to shift to get rid of
some compile time warnings.
Reviewed by:
- Json changes: Alexey Botchkov
- Charset changes in ctype-uca.c: Alexander Barkov
- InnoDB changes & Embedded server: Marko Mäkelä
- sql_acl.cc changes: Vicențiu Ciorbaru
- build_explain() changes: Sergey Petrunia