The error message modified.
Then the TABLE_SHARE::error_table_name() implementation taken from 10.3,
to be used as a name of the table in this message.
Alter statement changed the THD structure by setting the value to FIELD_CHECK_WARN
and then not resetting it back. This led ANALYZE to throw a warning which previously
it didn't.
MDEV-17625 Different warnings when comparing a garbage to DATETIME vs TIME
- Splitting processes of data type conversion (to TIME/DATE,DATETIME)
and warning generation.
Warning are now only get collected during conversion (in an "int" variable),
and are pushed in the very end of conversion (not in parallel).
Warnings generated by the low level routines str_to_xxx() and number_to_xxx()
can now be changed at the end, when TIME_FUZZY_DATES is applied,
from "Invalid value" to "Truncated invalid value".
Now "Illegal value" is issued only when the low level routine returned
an error and TIME_FUZZY_DATES was not set. Otherwise, if the low level
routine returned "false" (success), or if NULL was converted to a zero
datetime by TIME_FUZZY_DATES, then "Truncated illegal value"
is issued. This gives better warnings.
- Methods Type_handler::Item_get_date() and
Type_handler::Item_func_hybrid_field_type_get_date() now only
convert and collect warning information, but do not push warnings.
- Changing the return data type for Type_handler::Item_get_date()
and Type_handler::Item_func_hybrid_field_type_get_date() from
"bool" to "void". The conversion result (success vs error) can be
checked by testing ltime->time_type. MYSQL_TIME_{NONE|ERROR}
mean mean error, other values mean success.
- Adding new wrapper methods Type_handler::Item_get_date_with_warn() and
Type_handler::Item_func_hybrid_field_type_get_date_with_warn()
to do conversion followed by raising warnings, and changing
the code to call new Type_handler::***_with_warn() methods.
- Adding a helper class Temporal::Status, a wrapper
for MYSQL_TIME_STATUS with automatic initialization.
- Adding a helper class Temporal::Warn, to collect warnings
but without actually raising them. Moving a part of ErrConv
into a separate class ErrBuff, and deriving both Temporal::Warn
and ErrConv from ErrBuff. The ErrBuff part of Temporal::Warn
is used to collect textual representation of the input data.
- Adding a helper class Temporal::Warn_push. It's used
to collect warning information during conversion, and
automatically pushes warnings to the diagnostics area
on its destructor time (in case of non-zero warning).
- Moving more code from various functions inside class Temporal.
- Adding more Temporal_hybrid constructors and
protected Temporal methods make_from_xxx(),
which convert and only collect warning information, but do not
actually raise warnings.
- Now the low level functions str_to_datetime() and str_to_time()
always set status->warning if the return value is "true" (error).
- Now the low level functions number_to_time() and number_to_datetime()
set the "*was_cut" argument if the return value is "true" (error).
- Adding a few DBUG_ASSERTs to make sure that str_to_xxx() and
number_to_xxx() always set warnings on error.
- Adding new warning flags MYSQL_TIME_WARN_EDOM and MYSQL_TIME_WARN_ZERO_DATE
for the code symmetry. Before this change there was a special
code path for (rc==true && was_cut==0) which was treated by
Field_temporal::store_invalid_with_warning as "zero date violation".
Now was_cut==0 always means that there are no any error/warnings/notes
to be raised, not matter what rc is.
- Using new Temporal_hybrid constructors in combination with
Temporal::Warn_push inside str_to_datetime_with_warn(),
double_to_datetime_with_warn(), int_to_datetime_with_warn(),
Field::get_date(), Item::get_date_from_string(), and a few other places.
- Removing methods Dec_ptr::to_datetime_with_warn(),
Year::to_time_with_warn(), my_decimal::to_datetime_with_warn(),
Dec_ptr::to_datetime_with_warn().
Fixing Sec6::to_time() and Sec6::to_datetime() to
convert and only collect warnings, without raising warnings.
Now warning raising functionality resides in Temporal::Warn_push.
- Adding classes Longlong_hybrid_null and Double_null, to
return both value and the "IS NULL" flag. Adding methods
Item::to_double_null(), to_longlong_hybrid_null(),
Item_func_hybrid_field_type::to_longlong_hybrid_null_op(),
Item_func_hybrid_field_type::to_double_null_op().
Removing separate classes VInt and VInt_op, as they
have been replaced by a single class Longlong_hybrid_null.
- Adding a helper method Temporal::type_name_by_timestamp_type(),
moving a part of make_truncated_value_warning() into it,
and reusing in Temporal::Warn::push_conversion_warnings().
- Removing Item::make_zero_date() and
Item_func_hybrid_field_type::make_zero_mysql_time().
They provided duplicate functionality.
Now this code resides in Temporal::make_fuzzy_date().
The latter is now called for all Item types when data type
conversion (to DATE/TIME/DATETIME) is involved, including
Item_field and Item_direct_view_ref.
This fixes MDEV-17563: Item_direct_view_ref now correctly converts
NULL to a zero date when TIME_FUZZY_DATES says so.
main.derived_cond_pushdown: Move all 10.3 tests to the end,
trim trailing white space, and add an "End of 10.3 tests" marker.
Add --sorted_result to tests where the ordering is not deterministic.
main.win_percentile: Add --sorted_result to tests where the
ordering is no longer deterministic.
row_build_index_entry_low(): ext does not contain virtual columns.
row_upd_store_v_row(): Copy virtual column values
This is based on the following fix in MySQL 5.7.24:
commit 4ec2158bec73f1582501c4b3e3de250fed9edc9a
Author: Sachin Agarwal <sachin.z.agarwal@oracle.com>
Date: Fri Aug 24 14:44:13 2018 +0530
Bug #27968952 INNODB CRASH/CORRUPTION WITH TEXT PREFIX INDEXES
Problem:
There are two problems:
1. If there is one secondary index on extenally
stored column and another seconday index on virtual column (whose
base column is not externally stored). then while updating seconday
index on vitrual column, virtual column data is replaced by
externally stoared column.
2. In row update operation, node->row contains
shallow copy of virtual data fields. While building an update vector
containing all the fields to be modified, compute virtual column.
which may causes change in virtual data fields in node->row.
In both the above cases, while updating seconday index on virtual
column, couldn't find the row and hit an explicite assert inside
ROW_NOT_FOUND.
Fix:
1. Added check if column is virtual then its ext flag should be ZERO
and virtual column data will not be replaced by offset column data.
2. Deep copy of virtual data fields for node->row.
RB: #20382
Reviewed by : Jimmy.Yang@oracle.com
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
table for purge thread
Problem:
=======
Purge tries to fetch mdl lock for the whole table even though it tries
to open one of the partition. But table name length was wrongly set to indicate
the partition name too.
Solution:
========
- Table name length should identify the table name only not the partition name.
table for purge thread
Problem:
=======
Purge tries to fetch mdl lock for the whole table even though it tries
to open one of the partition. But table name length was wrongly set to indicate
the partition name too.
Solution:
========
- Table name length should identify the table name only not the partition name.
This is a merge from 10.2, but the 10.2 version of this will not
be pushed into 10.2 yet, because the 10.2 version would include
backports of MDEV-14717 and MDEV-14585, which would introduce
a crash recovery regression: Tables could be lost on
table-rebuilding DDL operations, such as ALTER TABLE,
OPTIMIZE TABLE or this new backup-friendly TRUNCATE TABLE.
The test innodb.truncate_crash occasionally loses the table due to
the following bug:
MDEV-17158 log_write_up_to() sometimes fails
Implement undo tablespace truncation via normal redo logging.
Implement TRUNCATE TABLE as a combination of RENAME to #sql-ib name,
CREATE, and DROP.
Note: Orphan #sql-ib*.ibd may be left behind if MariaDB Server 10.2
is killed before the DROP operation is committed. If MariaDB Server 10.2
is killed during TRUNCATE, it is also possible that the old table
was renamed to #sql-ib*.ibd but the data dictionary will refer to the
table using the original name.
In MariaDB Server 10.3, RENAME inside InnoDB is transactional,
and #sql-* tables will be dropped on startup. So, this new TRUNCATE
will be fully crash-safe in 10.3.
ha_mroonga::wrapper_truncate(): Pass table options to the underlying
storage engine, now that ha_innobase::truncate() will need them.
rpl_slave_state::truncate_state_table(): Before truncating
mysql.gtid_slave_pos, evict any cached table handles from
the table definition cache, so that there will be no stale
references to the old table after truncating.
== TRUNCATE TABLE ==
WL#6501 in MySQL 5.7 introduced separate log files for implementing
atomic and crash-safe TRUNCATE TABLE, instead of using the InnoDB
undo and redo log. Some convoluted logic was added to the InnoDB
crash recovery, and some extra synchronization (including a redo log
checkpoint) was introduced to make this work. This synchronization
has caused performance problems and race conditions, and the extra
log files cannot be copied or applied by external backup programs.
In order to support crash-upgrade from MariaDB 10.2, we will keep
the logic for parsing and applying the extra log files, but we will
no longer generate those files in TRUNCATE TABLE.
A prerequisite for crash-safe TRUNCATE is a crash-safe RENAME TABLE
(with full redo and undo logging and proper rollback). This will
be implemented in MDEV-14717.
ha_innobase::truncate(): Invoke RENAME, create(), delete_table().
Because RENAME cannot be fully rolled back before MariaDB 10.3
due to missing undo logging, add some explicit rename-back in
case the operation fails.
ha_innobase::delete(): Introduce a variant that takes sqlcom as
a parameter. In TRUNCATE TABLE, we do not want to touch any
FOREIGN KEY constraints.
ha_innobase::create(): Add the parameters file_per_table, trx.
In TRUNCATE, the new table must be created in the same transaction
that renames the old table.
create_table_info_t::create_table_info_t(): Add the parameters
file_per_table, trx.
row_drop_table_for_mysql(): Replace a bool parameter with sqlcom.
row_drop_table_after_create_fail(): New function, wrapping
row_drop_table_for_mysql().
dict_truncate_index_tree_in_mem(), fil_truncate_tablespace(),
fil_prepare_for_truncate(), fil_reinit_space_header_for_table(),
row_truncate_table_for_mysql(), TruncateLogger,
row_truncate_prepare(), row_truncate_rollback(),
row_truncate_complete(), row_truncate_fts(),
row_truncate_update_system_tables(),
row_truncate_foreign_key_checks(), row_truncate_sanity_checks():
Remove.
row_upd_check_references_constraints(): Remove a check for
TRUNCATE, now that the table is no longer truncated in place.
The new test innodb.truncate_foreign uses DEBUG_SYNC to cover some
race-condition like scenarios. The test innodb-innodb.truncate does
not use any synchronization.
We add a redo log subformat to indicate backup-friendly format.
MariaDB 10.4 will remove support for the old TRUNCATE logging,
so crash-upgrade from old 10.2 or 10.3 to 10.4 will involve
limitations.
== Undo tablespace truncation ==
MySQL 5.7 implements undo tablespace truncation. It is only
possible when innodb_undo_tablespaces is set to at least 2.
The logging is implemented similar to the WL#6501 TRUNCATE,
that is, using separate log files and a redo log checkpoint.
We can simply implement undo tablespace truncation within
a single mini-transaction that reinitializes the undo log
tablespace file. Unfortunately, due to the redo log format
of some operations, currently, the total redo log written by
undo tablespace truncation will be more than the combined size
of the truncated undo tablespace. It should be acceptable
to have a little more than 1 megabyte of log in a single
mini-transaction. This will be fixed in MDEV-17138 in
MariaDB Server 10.4.
recv_sys_t: Add truncated_undo_spaces[] to remember for which undo
tablespaces a MLOG_FILE_CREATE2 record was seen.
namespace undo: Remove some unnecessary declarations.
fil_space_t::is_being_truncated: Document that this flag now
only applies to undo tablespaces. Remove some references.
fil_space_t::is_stopping(): Do not refer to is_being_truncated.
This check is for tablespaces of tables. Potentially used
tablespaces are never truncated any more.
buf_dblwr_process(): Suppress the out-of-bounds warning
for undo tablespaces.
fil_truncate_log(): Write a MLOG_FILE_CREATE2 with a nonzero
page number (new size of the tablespace in pages) to inform
crash recovery that the undo tablespace size has been reduced.
fil_op_write_log(): Relax assertions, so that MLOG_FILE_CREATE2
can be written for undo tablespaces (without .ibd file suffix)
for a nonzero page number.
os_file_truncate(): Add the parameter allow_shrink=false
so that undo tablespaces can actually be shrunk using this function.
fil_name_parse(): For undo tablespace truncation,
buffer MLOG_FILE_CREATE2 in truncated_undo_spaces[].
recv_read_in_area(): Avoid reading pages for which no redo log
records remain buffered, after recv_addr_trim() removed them.
trx_rseg_header_create(): Add a FIXME comment that we could write
much less redo log.
trx_undo_truncate_tablespace(): Reinitialize the undo tablespace
in a single mini-transaction, which will be flushed to the redo log
before the file size is trimmed.
recv_addr_trim(): Discard any redo logs for pages that were
logged after the new end of a file, before the truncation LSN.
If the rec_list becomes empty, reduce n_addrs. After removing
any affected records, actually truncate the file.
recv_apply_hashed_log_recs(): Invoke recv_addr_trim() right before
applying any log records. The undo tablespace files must be open
at this point.
buf_flush_or_remove_pages(), buf_flush_dirty_pages(),
buf_LRU_flush_or_remove_pages(): Add a parameter for specifying
the number of the first page to flush or remove (default 0).
trx_purge_initiate_truncate(): Remove the log checkpoints, the
extra logging, and some unnecessary crash points. Merge the code
from trx_undo_truncate_tablespace(). First, flush all to-be-discarded
pages (beyond the new end of the file), then trim the space->size
to make the page allocation deterministic. At the only remaining
crash injection point, flush the redo log, so that the recovery
can be tested.
Problem:
========
Truncate operation holds MDL on the table (t1) and tries to
acquire InnoDB dict_operation_lock. Purge holds dict_operation_lock
and tries to acquire MDL on the table (t1) to evaluate virtual
column expressions for indexed virtual columns.
It leads to deadlock of purge and truncate table (DDL).
Solution:
=========
If purge tries to acquire MDL on the table then it should do the following:
i) Purge should release all innodb latches (including dict_operation_lock)
before acquiring metadata lock on the table.
ii) After acquiring metadata lock on the table, it should check whether the
table was dropped or renamed. If the table is dropped then purge should
ignore the undo log record. If the table is renamed then it should
release the old MDL and acquire MDL on the new name.
iii) Once purge acquires MDL, it should use the SQL table handle for all
the remaining virtual index for the purge record.
purge_node_t: Introduce new virtual column information to know whether
the MDL was acquired successfully.
This is joint work with Marko Mäkelä.
NULL values when there is no DEFAULT
Copy and inplace algorithm works similarly for
NULL to NOT NULL conversion for the following cases:
(1) strict sql mode - Should give error.
(2) non-strict sql mode - Should give warnings alone
(3) alter ignore table command. - Should give warnings alone.
After a failed ADD INDEX, dict_index_remove_from_cache_low()
could iterate the index fields and dereference a freed virtual
column object when trying to remove the index from the v_indexes
of the virtual column.
This regression was caused by a merge of
MDEV-16119 InnoDB lock->index refers to a freed object.
ha_innobase_inplace_ctx::clear_added_indexes(): Detach the
indexes of uncommitted indexes from virtual columns, so that
the iteration in dict_index_remove_from_cache_low() can be avoided.
ha_innobase::prepare_inplace_alter_table(): Ignore uncommitted
corrupted indexes when rejecting ALTER TABLE. (This minor bug was
revealed by the extension of the test case.)
dict_index_t::detach_columns(): Detach an index from virtual columns.
Invoked by both dict_index_remove_from_cache_low() and
ha_innobase_inplace_ctx::clear_added_indexes().
dict_col_t::detach(const dict_index_t& index): Detach an index from
a column.
dict_col_t::is_virtual(): Replaces dict_col_is_virtual().
dict_index_t::has_virtual(): Replaces dict_index_has_virtual().
Merge a test case and a code change from MySQL 5.7.22.
There was no commit message, but a test case was included.
d3ec326bcd
There is no Bug 25899959 mentioned in the MySQL 8.0.11 history.
Based on the number, it should have been filed before August 2017.
Maybe it was initially fixed in a not-yet-public MySQL 9.0 branch?
The code change differs from MySQL 5.7, because the mbminmaxlen
were split in MariaDB in MDEV-7049.
dict_foreign_qualify_index(): Avoid a redundant and harmful
computation of col_name of a virtual column. This fixes the
assertion failure.
dict_foreign_push_index_error(): Do not call dict_table_get_col_name()
on a virtual column. (It is unclear if this condition is actually
reachable.)
The algorithm change is based on a MySQL 8.0 fix for
BUG #26818787: ASSERTION: DATA0DATA.IC:430:TUPLE
by Krzysztof Kapuścik
ee606e62bb
If a record had been inserted in place of a delete-marked purgeable
record by modifying that record, and purge was accessing that record
before the off-page columns were written, row_build_index_entry()
would have returned NULL, causing a crash.
row_vers_non_virtual_fields_equal(): Check whether all non-virtual fields
of an index are equal. Replaces row_vers_non_vc_match(). A more complex
version of this function was called row_vers_non_vc_index_entry_match()
in the MySQL 8.0 fix.
row_vers_impl_x_locked_low(): This change is not directly related to
the reported problem, but apparently to the removal of the function
row_vers_non_vc_match(). This function checks if a secondary index
record was modified by a transaction that has not been committed yet.
For comparing the non-virtual columns, construct a secondary index
tuple from the table row.
row_vers_vc_matches_cluster(): Replace row_vers_non_vc_match() with
code that is equivalent to the row_vers_non_vc_index_entry_match()
in the MySQL 8.0 fix. Also, deduplicate some code by using goto.
The InnoDB background tasks can modify tables while LOCK TABLES...WRITE
is in effect. The purge of InnoDB history always worked like this in
MariaDB, but in MySQL 5.7 it sometimes yields to LOCK TABLES.
Also, make gcol.innodb_virtual_index run the purge for an UPDATE
before DROP TABLE is executed.
When MySQL 5.7 introduced indexed virtual columns, it introduced
several bugs into the online table-rebuilding ALTER, that is,
the row_log_table_apply() family of functions.
The online_log format that was introduced for online table-rebuilding
ALTER in MySQL 5.6 should be sufficient. Ideally, any indexed virtual
column values would be evaluated based on the log records in the temporary
file. There is no need to log virtual column values.
(For ADD INDEX, that is row_log_apply(), we always must log the values of
the keys, no matter if the columns are virtual.)
Because omitting the virtual column values removes any chance of
row_log_table_apply() working with indexed virtual columns, we
will for now refuse LOCK=NONE in table-rebuilding ALTER operations
when indexes on virtual columns exist. This restriction would be
lifted in MDEV-14341.
innobase_indexed_virtual_exist(): New predicate, to determine if
indexed virtual columns exist in a table definition.
ha_innobase::check_if_supported_inplace_alter(): Refuse online rebuild
if indexed virtual columns exist.
rec_get_converted_size_temp_v(), rec_convert_dtuple_to_temp_v(): Remove.
row_log_table_delete(), row_log_table_update(, row_log_table_insert():
Remove parameters for virtual columns.
trx_undo_read_v_rows(): Remove the col_map parameter.
row_log_table_apply(): Do not deal with virtual columns.
collateral changes:
* remove a test from innodb_virtual_basic that is already present in
gcol_keys_innodb
* set thd->abort_on_warning for inplace alter, just like it's set
for copy_data_between_tables - to have warnings converted into
errors identically in all alter algorithms
* don't ignore errors in TABLE::update_virtual_field
SQL Standard behavior for DROP COLUMN xxx RESTRICT:
* If a constraint (UNIQUE or CHECK) uses only the dropped column,
it's automatically dropped too. If it uses many columns - an error.
The test is for a bug that was introduced in MySQL 5.7.18
but not MariaDB 10.2, because MariaDB did not merge the change
that was considered incomplete and too risky for a GA release:
Bug#23481444 OPTIMISER CALL ROW_SEARCH_MVCC() AND READ THE INDEX
APPLIED BY UNCOMMITTED ROWS
So, we are only merging the test changes from the bug fix in MySQL 5.7.19,
not any code changes:
commit 4f86aca37d551cc756d9187ec901f8c4a68a0543
Author: Thirunarayanan Balathandayuthapani <thirunarayanan.balathandayuth@oracle.com>
Date: Wed Apr 26 11:10:41 2017 +0530
Bug #25793677 INNODB: FAILING ASSERTION: CLUST_TEMPL_FOR_SEC || LEN