(This is the assert that was added in fix for MDEV-26047)
Table elimination may remove an ON expression from an outer join.
However SELECT_LEX::update_used_tables() will still call
item->walk(&Item::eval_not_null_tables)
for eliminated expressions. If the subquery is constant and cheap
Item_cond_and will attempt to evaluate it, which will trigger an
assert.
The fix is not to call update_used_tables() or eval_not_null_tables()
for ON expressions that were eliminated.
The problem was that "group_min_max optimization" does not work if
some aggregate functions, like COUNT(*), is used.
The function get_best_group_min_max() is using the join->sum_funcs
array to check which aggregate functions are used.
The bug was that aggregates in HAVING where not yet added to
join->sum_funcs at the time get_best_group_min_max() was called.
Fixed by populate join->sum_funcs already in prepare, which means that
all sum functions will be in join->sum_funcs in get_best_group_min_max().
A benefit of this approach is that we can remove several calls to
make_sum_func_list() from the code and simplify the function.
I removed some wrong setting of 'sort_and_group'.
This variable is set when alloc_group_fields() is called, as part
of allocating the cache needed by end_send_group() and does not need
to be set by other functions.
One problematic thing was that Spider is using *join->sum_funcs to detect
at which stage the optimizer is and do internal calculations of aggregate
functions. Updating join->sum_funcs early caused Spider to fail when trying
to find min/max values in opt_sum_query().
Fixed by temporarily resetting sum_funcs during opt_sum_query().
Reviewer: Sergei Petrunia
This bug may affect the queries that uses a grouping derived table with
grouping list containing references to columns from different tables if
the optimizer decides to employ the split optimization for the derived
table. In some very specific cases it may affect queries with a grouping
derived table that refers only one base table.
This bug was caused by an improper fix for the bug MDEV-25128. The fix
tried to get rid of the equality conditions pushed into the where clause
of the grouping derived table T to which the split optimization had been
applied. The fix erroneously assumed that only those pushed equalities
that were used for ref access of the tables referenced by T were needed.
In fact the function remove_const() that figures out what columns from the
group list can be removed if the split optimization is applied can uses
other pushed equalities as well.
This patch actually provides a proper fix for MDEV-25128. Rather than
trying to remove invalid pushed equalities referencing the fields of SJM
tables with a look-up access the patch attempts not to push such equalities.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The problem was caused by the following scenario:
Subquery's table has two indexes, KEY a(a), KEY a_b(a,b)
- LATERAL DERIVED optimization decides to use index a.
= The subquery uses ref access over key a.
- test_if_skip_sort_order() sees that KEY a_b satisfies the
subquery's GROUP BY clause, and attempts to switch to it.
= It fails to do so, because KEYUSE objects for index a_b
are switched off.
Fixed by disallowing to change the ref access key if it uses KEYUSE
objects injected by LATERAL DERIVED optimization.
The easiest way to compile and test the server with UBSAN is to run:
./BUILD/compile-pentium64-ubsan
and then run mysql-test-run.
After this commit, one should be able to run this without any UBSAN
warnings. There is still a few compiler warnings that should be fixed
at some point, but these do not expose any real bugs.
The 'special' cases where we disable, suppress or circumvent UBSAN are:
- ref10 source (as here we intentionally do some shifts that UBSAN
complains about.
- x86 version of optimized int#korr() methods. UBSAN do not like unaligned
memory access of integers. Fixed by using byte_order_generic.h when
compiling with UBSAN
- We use smaller thread stack with ASAN and UBSAN, which forced me to
disable a few tests that prints the thread stack size.
- Verifying class types does not work for shared libraries. I added
suppression in mysql-test-run.pl for this case.
- Added '#ifdef WITH_UBSAN' when using integer arithmetic where it is
safe to have overflows (two cases, in item_func.cc).
Things fixed:
- Don't left shift signed values
(byte_order_generic.h, mysqltest.c, item_sum.cc and many more)
- Don't assign not non existing values to enum variables.
- Ensure that bool and enum values are properly initialized in
constructors. This was needed as UBSAN checks that these types has
correct values when one copies an object.
(gcalc_tools.h, ha_partition.cc, item_sum.cc, partition_element.h ...)
- Ensure we do not called handler functions on unallocated objects or
deleted objects.
(events.cc, sql_acl.cc).
- Fixed bugs in Item_sp::Item_sp() where we did not call constructor
on Query_arena object.
- Fixed several cast of objects to an incompatible class!
(Item.cc, Item_buff.cc, item_timefunc.cc, opt_subselect.cc, sql_acl.cc,
sql_select.cc ...)
- Ensure we do not do integer arithmetic that causes over or underflows.
This includes also ++ and -- of integers.
(Item_func.cc, Item_strfunc.cc, item_timefunc.cc, sql_base.cc ...)
- Added JSON_VALUE_UNITIALIZED to json_value_types and ensure that
value_type is initialized to this instead of to -1, which is not a valid
enum value for json_value_types.
- Ensure we do not call memcpy() when second argument could be null.
- Fixed that Item_func_str::make_empty_result() creates an empty string
instead of a null string (safer as it ensures we do not do arithmetic
on null strings).
Other things:
- Changed struct st_position to an OBJECT and added an initialization
function to it to ensure that we do not copy or use uninitialized
members. The change to a class was also motived that we used "struct
st_position" and POSITION randomly trough the code which was
confusing.
- Notably big rewrite in sql_acl.cc to avoid using deleted objects.
- Changed in sql_partition to use '^' instead of '-'. This is safe as
the operator is either 0 or 0x8000000000000000ULL.
- Added check for select_nr < INT_MAX in JOIN::build_explain() to
avoid bug when get_select() could return NULL.
- Reordered elements in POSITION for better alignment.
- Changed sql_test.cc::print_plan() to use pointers instead of objects.
- Fixed bug in find_set() where could could execute '1 << -1'.
- Added variable have_sanitizer, used by mtr. (This variable was before
only in 10.5 and up). It can now have one of two values:
ASAN or UBSAN.
- Moved ~Archive_share() from ha_archive.cc to ha_archive.h and marked
it virtual. This was an effort to get UBSAN to work with loaded storage
engines. I kept the change as the new place is better.
- Added in CONNECT engine COLBLK::SetName(), to get around a wrong cast
in tabutil.cpp.
- Added HAVE_REPLICATION around usage of rgi_slave, to get embedded
server to compile with UBSAN. (Patch from Marko).
- Added #ifdef for powerpc64 to avoid a bug in old gcc versions related
to integer arithmetic.
Changes that should not be needed but had to be done to suppress warnings
from UBSAN:
- Added static_cast<<uint16_t>> around shift to get rid of a LOT of
compiler warnings when using UBSAN.
- Had to change some '/' of 2 base integers to shift to get rid of
some compile time warnings.
Reviewed by:
- Json changes: Alexey Botchkov
- Charset changes in ctype-uca.c: Alexander Barkov
- InnoDB changes & Embedded server: Marko Mäkelä
- sql_acl.cc changes: Vicențiu Ciorbaru
- build_explain() changes: Sergey Petrunia
The assertion failed in handler::ha_reset upon SELECT under
READ UNCOMMITTED from table with index on virtual column.
This was the debug-only failure, though the problem is mush wider:
* MY_BITMAP is a structure containing my_bitmap_map, the latter is a raw
bitmap.
* read_set, write_set and vcol_set of TABLE are the pointers to MY_BITMAP
* The rest of MY_BITMAPs are stored in TABLE and TABLE_SHARE
* The pointers to the stored MY_BITMAPs, like orig_read_set etc, and
sometimes all_set and tmp_set, are assigned to the pointers.
* Sometimes tmp_use_all_columns is used to substitute the raw bitmap
directly with all_set.bitmap
* Sometimes even bitmaps are directly modified, like in
TABLE::update_virtual_field(): bitmap_clear_all(&tmp_set) is called.
The last three bullets in the list, when used together (which is mostly
always) make the program flow cumbersome and impossible to follow,
notwithstanding the errors they cause, like this MDEV-17556, where tmp_set
pointer was assigned to read_set, write_set and vcol_set, then its bitmap
was substituted with all_set.bitmap by dbug_tmp_use_all_columns() call,
and then bitmap_clear_all(&tmp_set) was applied to all this.
To untangle this knot, the rule should be applied:
* Never substitute bitmaps! This patch is about this.
orig_*, all_set bitmaps are never substituted already.
This patch changes the following function prototypes:
* tmp_use_all_columns, dbug_tmp_use_all_columns
to accept MY_BITMAP** and to return MY_BITMAP * instead of my_bitmap_map*
* tmp_restore_column_map, dbug_tmp_restore_column_maps to accept
MY_BITMAP* instead of my_bitmap_map*
These functions now will substitute read_set/write_set/vcol_set directly,
and won't touch underlying bitmaps.
The assertion failed in handler::ha_reset upon SELECT under
READ UNCOMMITTED from table with index on virtual column.
This was the debug-only failure, though the problem is mush wider:
* MY_BITMAP is a structure containing my_bitmap_map, the latter is a raw
bitmap.
* read_set, write_set and vcol_set of TABLE are the pointers to MY_BITMAP
* The rest of MY_BITMAPs are stored in TABLE and TABLE_SHARE
* The pointers to the stored MY_BITMAPs, like orig_read_set etc, and
sometimes all_set and tmp_set, are assigned to the pointers.
* Sometimes tmp_use_all_columns is used to substitute the raw bitmap
directly with all_set.bitmap
* Sometimes even bitmaps are directly modified, like in
TABLE::update_virtual_field(): bitmap_clear_all(&tmp_set) is called.
The last three bullets in the list, when used together (which is mostly
always) make the program flow cumbersome and impossible to follow,
notwithstanding the errors they cause, like this MDEV-17556, where tmp_set
pointer was assigned to read_set, write_set and vcol_set, then its bitmap
was substituted with all_set.bitmap by dbug_tmp_use_all_columns() call,
and then bitmap_clear_all(&tmp_set) was applied to all this.
To untangle this knot, the rule should be applied:
* Never substitute bitmaps! This patch is about this.
orig_*, all_set bitmaps are never substituted already.
This patch changes the following function prototypes:
* tmp_use_all_columns, dbug_tmp_use_all_columns
to accept MY_BITMAP** and to return MY_BITMAP * instead of my_bitmap_map*
* tmp_restore_column_map, dbug_tmp_restore_column_maps to accept
MY_BITMAP* instead of my_bitmap_map*
These functions now will substitute read_set/write_set/vcol_set directly,
and won't touch underlying bitmaps.
The issue here is when records are read from the temporary file
(filesort result in this case) via a cache(rr_from_cache).
The cache is initialized with init_rr_cache.
For correlated subquery the cache allocation is happening at each execution
of the subquery but the deallocation happens only once and that was
when the query execution was done.
So generally for subqueries we do two types of cleanup
1) Full cleanup: we should free all resources of the query(like temp tables).
This is done generally when the query execution is complete or the subquery
re-execution is not needed (case with uncorrelated subquery)
2) Partial cleanup: Minor cleanup that is required if
the subquery needs recalculation. This is done for all the structures that
need to be allocated for each execution (example SORT_INFO for filesort
is allocated for each execution of the correlated subquery).
The fix here would be free the cache used by rr_from_cache in the partial
cleanup phase.
A temporary table is needed for window function computation but if only a NAMED WINDOW SPEC
is used and there is no window function, then there is no need to create a temporary
table as there is no stage to compute WINDOW FUNCTION
The issue here is for degenerate joins we should execute the window
function but it is not getting executed in all the cases.
To get the window function values window function needs to be executed
always. This currently does not happen in few cases
where the join would return 0 or 1 row like
1) IMPOSSIBLE WHERE
2) MIN/MAX optimization
3) EMPTY CONST TABLE
The fix is to make sure that window functions get executed
and the temporary table is setup for the execution of window functions
because internally setup_wild() adjusts select_lex->with_wild directly
anyway, so there is no reason to pretend that the number of '*' may be
anything else but select_lex->with_wild
And don't update select_lex->item_list, because fields can come
from anywhere and don't necessarily have to be copied into select_lex.
best_access_path() is called from two optimization phases:
1. Plan choice phase, in choose_plan(). Here, the join prefix being
considered is in join->positions[]
2. Plan refinement stage, in fix_semijoin_strategies_for_picked_join_order
Here, the join prefix is in join->best_positions[]
It used to access join->positions[] from stage #2. This didnt cause any
valgrind or asan failures (as join->positions[] has been written-to before)
but the effect was similar to that of reading the random data:
The join prefix we've picked (in join->best_positions) could have
nothing in common with the join prefix that was last to be considered
(in join->positions).
This patch introduces the optimization that allows range optimizer to
consider index range scans that are built employing NOT NULL predicates
inferred from WHERE conditions and ON expressions.
The patch adds a new optimizer switch not_null_range_scan.
The MDEV-20265 commit e746f451d5
introduces DBUG_ASSERT(right_op == r_tbl) in
st_select_lex::add_cross_joined_table(), and that assertion would
fail in several tests that exercise joins. That commit was skipped
in this merge, and a separate fix of MDEV-20265 will be necessary in 10.4.