The first patch for the bug was erroneous: it did not take into account
the fact that the modified function get_key_scans_params() was called in
different contexts. As a result the patch caused a regression bug MDEV-22191.
The patch for this bug introduced an extra parameter. Actually we can
do without this parameter and use the fourth parameter for the same
puropose - to differentiate between the calls of the function for range
access and for index merge access.
Also removed the call of get_key_scans_params() in the code of the function
merge_same_index_scans() as not needed.
When index_merge_sort_union is turned off only ror scans were considered for range
scans, which is wrong.
To fix the problem ensure both ror scans and non ror scans are considered for range
access
This bug could manifest itself in a very rare cases when the optimizer
chose an execution plan by which a joined table was accessed by a table
scan and the optimizer was checking whether ranges checked for each record
could improve this plan. In such cases the optimizer evaluates range
conditions over a table that depend on other tables. For such conditions
the constructed SEL_ARG trees are marked as MAYBE_KEY. If a SEL_ARG object
constructed for a sargable condition marked as RANGE_KEY had the same
first key part as a MAYBE_KEY SEL_ARG object and the key_and() function
was called for this pair of SEL_ARG objects then an invalid SEL_ARG
object could be constructed that ultimately could lead to a crash before
the execution phase.
'index_merge_sort_union=off'
When index_merge_sort_union is set to 'off' and index_merge_union is set
to 'on' then any evaluated index merge scan must consist only of ROR scans.
The cheapest out of such index merges must be chosen. This index merge
might not be the cheapest index merge.
In the function test_if_cheaper_ordering we make a decision if using an index is better than
using filesort for ordering. If we chose to do range access then in test_quick_select we
should make sure that cost for table scan is set to DBL_MAX so that it is not picked.
selectivity values fails
After having set the assertion that checks validity of selectivity values
returned by the function table_cond_selectivity() a test case from
order_by.tesst failed. The failure occurred because range optimizer could
return as an estimate of the cardinality of the ranges built for an index
a number exceeding the total number of records in the table.
The second bug is more subtle. It may happen when there are several
indexes with same prefix defined on the first joined table t accessed by
a constant ref access. In this case the range optimizer estimates the
number of accessed records of t for each usable index and these
estimates can be different. Only the first of these estimates is taken
into account when the selectivity of the ref access is calculated.
However the optimizer later can choose a different index that provides
a different estimate. The function table_condition_selectivity() could use
this estimate to discount the selectivity of the ref access. This could
lead to an selectivity value returned by this function that was greater
that 1.
we had the statistics tables in the FROM list of the select.
The statistics for tables are not read in such cases, so we need
to check this case separately.
There were two newly enabled warnings:
1. cast for a function pointers. Affected sql_analyse.h, mi_write.c
and ma_write.cc, mf_iocache-t.cc, mysqlbinlog.cc, encryption.cc, etc
2. memcpy/memset of nontrivial structures. Fixed as:
* the warning disabled for InnoDB
* TABLE, TABLE_SHARE, and TABLE_LIST got a new method reset() which
does the bzero(), which is safe for these classes, but any other
bzero() will still cause a warning
* Table_scope_and_contents_source_st uses `TABLE_LIST *` (trivial)
instead of `SQL_I_List<TABLE_LIST>` (not trivial) so it's safe to
bzero now.
* added casts in debug_sync.cc and sql_select.cc (for JOIN)
* move assignment method for MDL_request instead of memcpy()
* PARTIAL_INDEX_INTERSECT_INFO::init() instead of bzero()
* remove constructor from READ_RECORD() to make it trivial
* replace some memcpy() with c++ copy assignments
In the function QUICK_RANGE_SELECT::init_ror_merged_scan we create a seperate handler if the handler in
head->file cannot be reused. The flag free_file tells us if we have a seperate handler or not.
There are cases where you might create a handler and then there might be a failure(running ALTER)
and then we have to revert the handler back to the original one. The code does that
but it does not reset the flag 'free_file' in this case.
Also backported f2c418079d.
The problem here is EITS statistics does not calculate statistics for the partitions of the table.
So a temporary solution would be to not read EITS statistics for partitioned tables.
Also disabling reading of EITS for columns that participate in the partition list of a table.
In this case we were trying to access memory for key_parts which we did not
assign for a fields because it did not any EITS statistics.
The check if EITS statistics for a column is avaialable or not was missing.
For index merge union[or sort union], the estimates are not taken into account while calculating the selectivity of
a condition. So instead of showing the estimates of the index merge union[or sort union], it shows estimates equal to
all the records of the table.
The fix for the issue is to include the selectivity of index merge
union[or sort union] while calculating the selectivity of a condition.
optimizer_use_condition_selectivity>=3
Selectivity analysis should be disabled for Geometrical columns
for the case like geometric_field= string_constant.
Currently for selectivity calculation we perform range analysis for a column even when we don't have any statistics(EITS).
This makes less sense but is used to catch contradiction for WHERE condition.
So the solution is to not perform range analysis for selectivity calculation for columns that do not have statistics.
and use_stat_tables= PREFERABLY
Currently the code that calculates selectivity for a table does not take into account the case when
we can have GROUP BY optimization (looses index scan).
TRASH was mapped to TRASH_FREE and was supposed to be used for memory
that should not be accessed anymore, while TRASH_ALLOC() is to be
used for uninitialized but to-be-used memory.
But sometimes TRASH() was used in the latter sense.
Remove TRASH() macro, always use explicit TRASH_ALLOC() or TRASH_FREE().
In get_mm_tree we have to change Field_geom::geom_type to
GEOMETRY as we have to let storing all types of the spatial features
in the field. So now we restore the original geom_type as it's
done.
Also, implement MDEV-11027 a little differently from 5.5 and 10.0:
recv_apply_hashed_log_recs(): Change the return type back to void
(DB_SUCCESS was always returned).
Report progress also via systemd using sd_notifyf().
When building different range and index-merge trees the range optimizer
could build an index-merge tree with an index scan containing less ranges
then needed. This index-merge could be chosen as the best. Following this
index-merge the executioner missed some rows in the result set.
The invalid index scan was built due to an inconsistency in the code
back-ported from mysql into 5.3 that fixed mysql bug #11765831:
the code added to key_or() could change shared keys of the second
ored tree. Partially the problem was fixed in the patch for mariadb
bug #823301, but it turned out that only partially.
In file sql/opt_range.cc,when calculate_cond_selectivity_for_table() is called with optimizer_use_condition_selectivity=4 then
- thd->no_errors is set to 1
- the original value of thd->no_error is not restored to its original value
- this is causing the assertion to fail in the subsequent queries
Fixed by restoring the original value of thd->no_errors
In the function create_key_parts_for_pseudo_indexes()
the key part structures of pseudo-indexes created for
BLOB fields were set incorrectly.
Also the key parts for long fields must be 'truncated'
up to the maximum length acceptable for key parts.
Fix get_quick_keys(): When building range tree from a condition
in form
keypart1=const AND (keypart2 < 0 OR keypart2>=0)
the SEL_ARG for keypart2 represents an interval (-inf, +inf).
However, the logic that sets UNIQUE_RANGE flag fails to recognize
this, and sets UNIQUE_RANGE flag if (keypart1, keypart2) covered
a unique key.
As a result, range access executor assumes the interval can have
at most one row and only reads the first row from it.