1
0
mirror of https://github.com/MariaDB/server.git synced 2025-09-03 20:43:11 +03:00
Commit Graph

7636 Commits

Author SHA1 Message Date
Sergei Golubchik
ef781162ff Merge branch '10.4' into 10.5 2022-05-09 22:04:06 +02:00
Sergei Golubchik
a70a1cf3f4 Merge branch '10.3' into 10.4 2022-05-08 23:03:08 +02:00
Sergei Golubchik
6f741eb6e4 Merge branch '10.2' into 10.3 2022-05-07 11:48:15 +02:00
Sergei Petrunia
ba4927e520 MDEV-19398: Assertion `item1->type() == Item::FIELD_ITEM ...
Window Functions code tries to minimize the number of times it
needs to sort the select's resultset by finding "compatible"
OVER (PARTITION BY ... ORDER BY ...) clauses.

This employs compare_order_elements(). That function assumed that
the order expressions are Item_field-derived objects (that refer
to a temp.table). But this is not always the case: one can
construct queries order expressions are arbitrary item expressions.

Add handling for such expressions: sort them according to the window
specification they appeared in.
This means we cannot detect that two compatible PARTITION BY clauses
that use expressions can share the sorting step.
But at least we won't crash.
2022-05-04 15:47:45 +03:00
Igor Babaev
39feab3cd3 MDEV-26412 Server crash in Item_field::fix_outer_field for INSERT SELECT
IF an INSERT/REPLACE SELECT statement contained an ON expression in the top
level select and this expression used a subquery with a column reference
that could not be resolved then an attempt to resolve this reference as
an outer reference caused a crash of the server. This happened because the
outer context field in the Name_resolution_context structure was not set
to NULL for such references. Rather it pointed to the first element in
the select_stack.

Note that starting from 10.4 we cannot use the SELECT_LEX::outer_select()
method when parsing a SELECT construct.

Approved by Oleksandr Byelkin <sanja@mariadb.com>
2022-04-27 08:23:01 -07:00
Daniel Black
580cbd18b3 Merge branch 10.4 into 10.5
A few of constaint -> constraint
2022-04-21 15:47:03 +10:00
Daniele Sciascia
11e5aba792 MDEV-26575 Crash on shutdown after starting an XA transaction
Disallow XA when Galera library is loaded.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2022-04-20 10:41:19 +03:00
Marko Mäkelä
cacb61b6be Merge 10.4 into 10.5 2022-04-06 10:06:39 +03:00
Marko Mäkelä
f089f8d95e MDEV-23328 fixup: sign mismatch in format strings
kill_one_thread(): Fix integer sign mismatch in some format strings.
Some of this was introduced
in commit 5c230b21bf
2022-04-06 08:59:41 +03:00
Marko Mäkelä
d62b0368ca Merge 10.4 into 10.5 2022-03-29 12:59:18 +03:00
Daniele Sciascia
c63eab2c68 MDEV-28055: Galera ps-protocol fixes
* Fix test galera.MW-44 to make it work with --ps-protocol
* Skip test galera.MW-328C under --ps-protocol This test
  relies on wsrep_retry_autocommit, which has no effect
  under ps-protocol.
* Return WSREP related errors on COM_STMT_PREPARE commands
  Change wsrep_command_no_result() to allow sending back errors
  when a statement is prepared. For example, to handle deadlock
  error due to BF aborted transaction during prepare.
* Add sync waiting before statement prepare
  When a statement is prepared, tables used in the statement may be
  opened and checked for existence. Because of that, some tests (for
  example galera_create_table_as_select) that CREATE a table in one node
  and then SELECT from the same table in another node may result in errors
  due to non existing table.
  To make tests behave similarly under normal and PS protocol, we add a
  call to sync wait before preparing statements that would sync wait
  during normal execution.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2022-03-18 08:30:26 +02:00
sjaakola
97582f1c06 MDEV-27649 PS conflict handling causing node crash
Handling BF abort for prepared statement execution so that EXECUTE processing will continue
until parameter setup is complete, before BF abort bails out the statement execution.

THD class has new boolean member: wsrep_delayed_BF_abort, which is set if BF abort is observed
in do_command() right after reading client's packet, and if the client has sent PS execute command.
In such case, the deadlock error is not returned immediately back to client, but the PS execution
will be started. However, the PS execution loop, will now check if wsrep_delayed_BF_abort is set, and
stop the PS execution after the type information has been assigned for the PS.
With this, the PS protocol type information, which is present in the first PS EXECUTE command, is not lost
even if the first PS EXECUTE command was marked to abort.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2022-03-18 08:30:25 +02:00
Daniel Black
b73d852779 Merge 10.4 to 10.5 2022-03-17 17:03:24 +11:00
Daniel Black
069139a549 Merge 10.3 to 10.4
extra2_read_len resolved by keeping the implementation
in sql/table.cc by exposed it for use by ha_partition.cc

Remove identical implementation in unireg.h
(ref: bfed2c7d57)
2022-03-16 16:39:10 +11:00
Daniel Black
6a2d88c132 Merge 10.2 to 10.3 2022-03-16 12:51:22 +11:00
Daniel Black
57dbe8785d MDEV-23915 ER_KILL_DENIED_ERROR not passed a thread id (part 2)
Per Marko's comment in JIRA, sql_kill is passing the thread id
as long long. We change the format of the error messages to match,
and cast the thread id to long long in sql_kill_user.
2022-03-16 09:37:45 +11:00
Daniel Black
99837c61a6 MDEV-23915 ER_KILL_DENIED_ERROR not passed a thread id
The 10.5 test error main.grant_kill showed up a incorrect
thread id on a big endian architecture.

The cause of this is the sql_kill_user function assumed the
error was ER_OUT_OF_RESOURCES, when the the actual error was
ER_KILL_DENIED_ERROR. ER_KILL_DENIED_ERROR as an error message
requires a thread id to be passed as unsigned long, however a
user/host was passed.

ER_OUT_OF_RESOURCES doesn't even take a user/host, despite
the optimistic comment. We remove this being passed as an
argument to the function so that when MDEV-21978 is implemented
one less compiler format warning is generated (which would
have caught this error sooner).

Thanks Otto for reporting and Marko for analysis.
2022-03-16 09:37:45 +11:00
Oleksandr Byelkin
e26b30d1bb Merge branch '10.4' into 10.5 2021-11-02 15:35:31 +01:00
Oleksandr Byelkin
bb46b79c8c Fix mutex order according to a new sequence. 2021-11-02 13:09:35 +01:00
Jan Lindström
7846c56fbe MDEV-23328 Server hang due to Galera lock conflict resolution
* Fix error handling NULL-pointer reference
* Add mtr-suppression on galera_ssl_upgrade
2021-11-02 10:25:52 +02:00
Jan Lindström
eab7f5d8bc MDEV-23328 Server hang due to Galera lock conflict resolution
* Fix error handling NULL-pointer reference
* Add mtr-suppression on galera_ssl_upgrade
2021-11-02 10:08:54 +02:00
Jan Lindström
db64924454 MDEV-23328 Server hang due to Galera lock conflict resolution
* Fix error handling NULL-pointer reference
* Add mtr-suppression on galera_ssl_upgrade
2021-11-02 07:23:40 +02:00
Jan Lindström
e571eaae9f MDEV-23328 Server hang due to Galera lock conflict resolution
Use better error message when KILL fails even in case TOI
fails.
2021-11-02 07:20:30 +02:00
Jan Lindström
ea239034de MDEV-23328 Server hang due to Galera lock conflict resolution
* Fix error handling NULL-pointer reference
* Add mtr-suppression on galera_ssl_upgrade
2021-11-01 13:07:55 +02:00
sjaakola
ef2dbb8dbc MDEV-23328 Server hang due to Galera lock conflict resolution
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is

          wsrep_thd_LOCK()
          wsrep_kill_victim()
          lock_rec_other_has_conflicting()
          lock_clust_rec_read_check_and_lock()
          row_search_mvcc()
          ha_innobase::index_read()
          ha_innobase::rnd_pos()
          handler::ha_rnd_pos()
          handler::rnd_pos_by_record()
          handler::ha_rnd_pos_by_record()
          Rows_log_event::find_row()
          Update_rows_log_event::do_exec_row()
          Rows_log_event::do_apply_event()
          Log_event::apply_event()
          wsrep_apply_events()

and mutexes are taken in the order

          lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data

When a normal KILL statement is executed, the stack is

          innobase_kill_query()
          kill_handlerton()
          plugin_foreach_with_mask()
          ha_kill_query()
          THD::awake()
          kill_one_thread()

        and mutexes are

          victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex

This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.

In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.

TOI replication is used, in this approach,  purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.

This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2021-10-29 20:40:35 +02:00
Jan Lindström
d5bc05798f MDEV-25114: Crash: WSREP: invalid state ROLLED_BACK (FATAL)
Revert "MDEV-23328 Server hang due to Galera lock conflict resolution"

This reverts commit eac8341df4.
2021-10-29 20:38:11 +02:00
sjaakola
157b3a637f MDEV-23328 Server hang due to Galera lock conflict resolution
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is

          wsrep_thd_LOCK()
          wsrep_kill_victim()
          lock_rec_other_has_conflicting()
          lock_clust_rec_read_check_and_lock()
          row_search_mvcc()
          ha_innobase::index_read()
          ha_innobase::rnd_pos()
          handler::ha_rnd_pos()
          handler::rnd_pos_by_record()
          handler::ha_rnd_pos_by_record()
          Rows_log_event::find_row()
          Update_rows_log_event::do_exec_row()
          Rows_log_event::do_apply_event()
          Log_event::apply_event()
          wsrep_apply_events()

and mutexes are taken in the order

          lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data

When a normal KILL statement is executed, the stack is

          innobase_kill_query()
          kill_handlerton()
          plugin_foreach_with_mask()
          ha_kill_query()
          THD::awake()
          kill_one_thread()

        and mutexes are

          victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex

This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.

In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.

TOI replication is used, in this approach,  purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.

This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2021-10-29 10:00:17 +03:00
sjaakola
5c230b21bf MDEV-23328 Server hang due to Galera lock conflict resolution
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is

          wsrep_thd_LOCK()
          wsrep_kill_victim()
          lock_rec_other_has_conflicting()
          lock_clust_rec_read_check_and_lock()
          row_search_mvcc()
          ha_innobase::index_read()
          ha_innobase::rnd_pos()
          handler::ha_rnd_pos()
          handler::rnd_pos_by_record()
          handler::ha_rnd_pos_by_record()
          Rows_log_event::find_row()
          Update_rows_log_event::do_exec_row()
          Rows_log_event::do_apply_event()
          Log_event::apply_event()
          wsrep_apply_events()

and mutexes are taken in the order

          lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data

When a normal KILL statement is executed, the stack is

          innobase_kill_query()
          kill_handlerton()
          plugin_foreach_with_mask()
          ha_kill_query()
          THD::awake()
          kill_one_thread()

        and mutexes are

          victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex

This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.

In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.

TOI replication is used, in this approach,  purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.

This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2021-10-29 09:52:52 +03:00
Jan Lindström
aa7ca987db MDEV-25114: Crash: WSREP: invalid state ROLLED_BACK (FATAL)
Revert "MDEV-23328 Server hang due to Galera lock conflict resolution"

This reverts commit eac8341df4.
2021-10-29 09:52:40 +03:00
sjaakola
db50ea3ad3 MDEV-23328 Server hang due to Galera lock conflict resolution
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is

          wsrep_thd_LOCK()
          wsrep_kill_victim()
          lock_rec_other_has_conflicting()
          lock_clust_rec_read_check_and_lock()
          row_search_mvcc()
          ha_innobase::index_read()
          ha_innobase::rnd_pos()
          handler::ha_rnd_pos()
          handler::rnd_pos_by_record()
          handler::ha_rnd_pos_by_record()
          Rows_log_event::find_row()
          Update_rows_log_event::do_exec_row()
          Rows_log_event::do_apply_event()
          Log_event::apply_event()
          wsrep_apply_events()

and mutexes are taken in the order

          lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data

When a normal KILL statement is executed, the stack is

          innobase_kill_query()
          kill_handlerton()
          plugin_foreach_with_mask()
          ha_kill_query()
          THD::awake()
          kill_one_thread()

        and mutexes are

          victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex

This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.

In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.

TOI replication is used, in this approach,  purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.

This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2021-10-29 07:57:18 +03:00
Marko Mäkelä
f59f5c4a10 Revert MDEV-25114
Revert 88a4be75a5 and
9d97f92feb, which had been
prematurely pushed by accident.
2021-09-24 16:21:20 +03:00
sjaakola
88a4be75a5 MDEV-25114 Crash: WSREP: invalid state ROLLED_BACK (FATAL)
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.

In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.

TOI replication is used, in this approach,  purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.

This patch also fixes mutex locking order and unprotected
THD member accesses on bf aborting case. We try to hold
THD::LOCK_thd_data during bf aborting. Only case where it
is not possible is at wsrep_abort_transaction before
call wsrep_innobase_kill_one_trx where we take InnoDB
mutexes first and then THD::LOCK_thd_data.

This will also fix possible race condition during
close_connection and while wsrep is disconnecting
connections.

Added wsrep_bf_kill_debug test case

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2021-09-24 09:47:31 +03:00
Vladislav Vaintroub
3504f70f7f Bison 3.7 - fix "conversion from 'ptrdiff_t' to 'ulong', possible loss of data" 2021-09-11 15:19:42 +02:00
Marko Mäkelä
87ff4ba7c8 Merge 10.4 into 10.5 2021-08-26 08:46:57 +03:00
Marko Mäkelä
15b691b7bd After-merge fix f84e28c119
In a rebase of the merge, two preceding commits were accidentally reverted:
commit 112b23969a (MDEV-26308)
commit ac2857a5fb (MDEV-25717)

Thanks to Daniele Sciascia for noticing this.
2021-08-25 17:35:44 +03:00
Marko Mäkelä
f84e28c119 Merge 10.3 into 10.4 2021-08-18 16:51:52 +03:00
Leandro Pacheco
112b23969a MDEV-26308 : Galera test failure on galera.galera_split_brain
Contains following fixes:

* allow TOI commands to timeout while trying to acquire TOI with
override lock_wait_timeout with a LONG_TIMEOUT only after
succesfully entering TOI
* only ignore lock_wait_timeout on TOI
* fix galera_split_brain test as TOI operation now returns ER_LOCK_WAIT_TIMEOUT after lock_wait_timeout
* explicitly test for TOI

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2021-08-18 08:57:33 +03:00
Oleksandr Byelkin
ae6bdc6769 Merge branch '10.4' into 10.5 2021-07-31 23:19:51 +02:00
mkaruza
386ac12a48 MDEV-25740 Assertion `!wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd->is_current_stmt_binlog_format_row())' failed in void wsrep_commit_empty(THD*, bool)
Using ROLLBACK with `completion_type = CHAIN` result in start of
transaction and implicit commit before previous WSREP internal data is
cleared.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2021-07-28 15:04:30 +03:00
Sergei Golubchik
b34cafe9d9 cleanup: move thread_count to THD_count::value()
because the name was misleading, it counts not threads, but THDs,
and as THD_count is the only way to increment/decrement it, it
could as well be declared inside THD_count.
2021-07-24 12:37:50 +02:00
Oleksandr Byelkin
a7d880f0b0 MDEV-21916: COM_STMT_BULK_EXECUTE with RETURNING insert wrong values
The problem is that array binding uses net buffer to read parameters for each
execution while each execiting with RETURNING write in the same buffer.

Solution is to allocate new net buffer to avoid changing buffer we are reading
from.
2021-07-15 16:28:13 +02:00
Sergei Golubchik
4777097fee followup: rename generated files to have distinct names 2021-05-27 00:40:23 +02:00
Marko Mäkelä
365cd08345 Merge 10.4 into 10.5 2021-05-26 09:47:28 +03:00
Igor Babaev
675716e1cb MDEV-23886 Reusing CTE inside a function fails with table doesn't exist
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.

This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.

# Conflicts:
#	sql/sql_cte.cc
#	sql/sql_cte.h
#	sql/sql_lex.cc
#	sql/sql_lex.h
#	sql/sql_view.cc
#	sql/sql_yacc.yy
#	sql/sql_yacc_ora.yy
2021-05-25 21:48:54 -07:00
Marko Mäkelä
1dea7f7977 Merge 10.3 into 10.4 2021-05-25 15:38:57 +03:00
Igor Babaev
04de651725 MDEV-23886 Reusing CTE inside a function fails with table doesn't exist
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.

This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
2021-05-25 00:43:03 -07:00
Marko Mäkelä
1864a8ea93 Merge 10.2 into 10.3 2021-05-24 09:38:49 +03:00
Igor Babaev
43c9fcefc0 MDEV-23886 Reusing CTE inside a function fails with table doesn't exist
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.

This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
2021-05-21 16:00:35 -07:00
Marko Mäkelä
df33b719ca Merge 10.4 into 10.5 2021-04-22 08:25:40 +03:00
Marko Mäkelä
0d267f7caa MDEV-25362 after-merge fix: Remove unnecessary code 2021-04-22 07:36:04 +03:00