1
0
mirror of https://github.com/MariaDB/server.git synced 2025-04-26 11:49:09 +03:00

35 Commits

Author SHA1 Message Date
Oleksandr Byelkin
48af85db21 Merge branch '10.11' into 11.0 2023-11-08 17:09:44 +01:00
Oleksandr Byelkin
6cfd2ba397 Merge branch '10.4' into 10.5 2023-11-08 12:59:00 +01:00
Vlad Lesin
275f434392 MDEV-25163 Rowid filter does not process storage engine error correctly.
The fix is to return 3-state value from Range_rowid_filter::build()
call:
1. The filter was built successfully;
2. The filter was not built, but the error was not fatal, i.e. there is
no need to rollback transaction. For example, if the size of container to
storevrow ids is not enough;
3. The filter was not built because of fatal error, for example,
deadlock or lock wait timeout from storage engine. In this case we
should stop query plan execution and roll back transaction.

Reviewed by: Sergey Petrunya
2023-09-25 15:13:07 +03:00
Monty
ded4ed3220 MDEV-30944 Range_rowid_filter::fill() leaves file->keyread at MAX_KEY
This test case exposed 2 different bugs:
- When replacing a range with an index scan on a covering key
  in test_if_skip_sort_order() we didn't disable filtering.
  Filtering does not make much sense in this case.
  - Fixed by disabling filtering in this case.
- Range_rowid_filter::fill() did not take into account that keyread
  could already active, which caused an assert when it tried to
  activate another keyread.
  - Fixed by remembering old keyread state at start and restoring it
    at end.

Other things:
- ha_start_keyread() allowed multiple calls. This is wrong, especially
  as we do no check if the index changed!
  I added an assert() to ensure that we don't call it there is already
  an active keyread.
- ha_end_keyread() always called ha_extra(), even if keyread was not
  active.  Added a check to avoid the extra call.
2023-06-07 18:44:12 +03:00
Monty
15e889c300 MDEV-30699: Updated prev_record_reads() to be more exact
The old code in prev_record_reads() did give wrong estimates when a
join_buffer was used or if the table was depending on more than one
other tables. When join_cache is used, it will cause a re-order of row
combinations, which causes more calls to the engine for tables that
are depending on tables before the join_cached one.

The new prev_records_read() code provides more exact estimates and
should never give a 'too low estimate', assuming that the data to the
function is correct

The definition of prev_record_read() is also updated.
The new definition is:
  "Estimate the number of engine ha_index_read_calls for EQ_REF tables
  when taking into account the one-row-cache in join_read_always_key()"

The cost of using prev_record_reads() value is changed. The value is
now used similar as before to calculate the cost of the storage engine
calls. However the cost of the WHERE cost is changed to take into
account the total number of row combinations as the WHERE has to be
checked even if the one-row-cache is used. This makes the cost
slightly higher than before (for the same prev_record_reads() value).

Other things:
- Cached return value of prev_record_read() in best_access_path() to
  avoid some function calls.
- Fixed bug where position[].use_join_buffer was set in
  best_acess_path() when join buffer was not used. This confused the
  semi join optimizer to try to reoptimize plans that did not need to be
  reoptimized.
  The effect of the bug fix is that we avoid doing some re-optimziations
  with semi-joins when join_buffer is not used. In these cases the value
  shown for the 'Filtering' column in EXPLAIN EXTENDED may change.
- Added 'prev_record.cc' that was used to verify the logic in
  prev_record_reads().

Changes in test suite:
- EQ_REF tables are moved up to be earlier. This is because either the
  higher WHERE cost when EQ_REF is used with more row combination or
  change of cost when using join_cache.
- Filtered has changed (to the better) for some cases using semi-joins
  subselect_sj.test subselect_sj_jcl6.test
2023-02-21 15:36:39 +03:00
Monty
3c1b7fb03e Adjust costs for rowid filter
- Use log2() insted of log()
- Added missing ''+' when calculating rowid setup cost
- Adjusted ROWID_FILTER_PER_ELEMENT_MODIFIER (from 3 to 1)

Other things:
- Adjusted cost for index_merge where rows_out < 1.0

The effects of the changes:
- rowid filter will have higher setup cost
- rowid filter will have slightly less costs per row

This can be seen in mtr where some tests, with 'small tables or
that uses rowid filters with many rows, will not use rowid filter anymore.
2023-02-21 15:35:27 +03:00
Monty
ed0a723566 Cache file->index_flags(index, 0, 1) in table->key_info[index].index_flags
The reason for this is that we call file->index_flags(index, 0, 1)
multiple times in best_access_patch()when optimizing a table.
For example, in InnoDB, the calls is not trivial (4 if's and 2 assignments)
Now the function is inlined and is just a memory reference.

Other things:
- handler::is_clustering_key() and pk_is_clustering_key() are now inline.
- Added TABLE::can_use_rowid_filter() to simplify some code.
- Test if we should use a rowid_filter only if can_use_rowid_filter() is
  true.
- Added TABLE::is_clustering_key() to avoid a memory reference.
- Simplify some code using the fact that HA_KEYREAD_ONLY is true implies
  that HA_CLUSTERED_INDEX is false.
- Added DBUG_ASSERT to TABLE::best_range_rowid_filter() to ensure we
  do not call it with a clustering key.
- Reorginized elements in struct st_key to get better memory alignment.
- Updated ha_innobase::index_flags() to not have
  HA_DO_RANGE_FILTER_PUSHDOWN for clustered index
2023-02-03 14:38:26 +03:00
Monty
66dde8a54e Added rowid_filter support to Aria
This includes:
- cleanup and optimization of filtering and pushdown engine code.
- Adjusted costs for rowid filters (based on extensive testing
  and profiling).

This made a small two changes to the handler_rowid_filter_is_active()
API:
- One should not call it with a zero pointer!
- One does not need to call handler_rowid_filter_is_active() for every
  row anymore. It is enough to check if filter is active by calling it
  call it during index_init() or when handler::rowid_filter_changed()
  is called

The changes was to avoid unnecessary function calls and checks if
pushdown conditions and rowid_filter is not used.

Updated costs for rowid_filter_lookup() to be closer to reality.
The old cost was based only on rowid_compare_cost. This is now
changed to take into account the overhead in checking the rowid.

Changed the Range_rowid_filter class to use DYNAMIC_ARRAY directly
instead of Dynamic_array<>. This was done to be able to use the new
append_dynamic() functions which gives a notable speed improvment
compared to the old code.  Removing the abstraction also makes
the code easier to understand.

The cost of filtering is now slightly lower than before, which
is reflected in some test cases that is now using rowid filters.
2023-02-03 10:42:28 +03:00
Monty
d9d0e78039 Add limits for how many IO operations a table access will do
This solves the current problem in the optimizer
- SELECT FROM big_table
  - SELECT from small_table where small_table.eq_ref_key=big_table.id

The old code assumed that each eq_ref access will cause an IO.
As the cost of IO is high, this dominated the cost for the later table
which caused the optimizer to prefer table scans + join cache over
index reads.

This patch fixes this issue by limit the number of expected IO calls,
for rows and index separately, to the size of the table or index or
the number of accesses that we except in a range for the index.

The major changes are:

- Adding a new structure ALL_READ_COST that is mainly used in
  best_access_path() to hold the costs parts of the cost we are
  calculating. This allows us to limit the number of IO when multiplying
  the cost with the previous row combinations.
- All storage engine cost functions are changed to return IO_AND_CPU_COST.
  The virtual cost functions should now return in IO_AND_CPU_COST.io
  the number of disk blocks that will be accessed instead of the cost
  of the access.
- We are not limiting the io_blocks for table or index scans as we
  assume that engines may not store these in the 'hot' part of the
  cache. Table and index scan also uses much less IO blocks than
  key accesses, so the original issue is not as critical with scans.

Other things:
  OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different
  costs. All the old costs, like index_only_read, can be extracted
  from 'cost'.
- Added to the start of some functions 'handler *file= table->file'
  to shorten the code that is using the handler.
- handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST
  to 'cost in milliseconds'
- New functions:  handler::index_blocks() and handler::row_blocks()
  which are used to limit the IO.
- Added index_cost and row_cost to Cost_estimate and removed all not
  needed members.
- Removed cost coefficients from Cost_estimate as these don't make sense
  when costs (except IO_BLOCKS) are in milliseconds.
- Removed handler::avg_io_cost() and replaced it with DISK_READ_COST.
- Renamed best_range_rowid_filter_for_partial_join() to
  best_range_rowid_filter() as using the old name made rows too long.
- Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to
  'double' as Cost_estimate power was not used for these and thus
  just caused storage and performance overhead.
- Changed cost_for_index_read() to use 'worst_seeks' to only limit
  IO, not number of table accesses. With this patch worst_seeks is
  probably not needed anymore, but I kept it around just in case.
- Applying cost for filter got to be much shorter and easier thanks
  to the API changes.
- Adjusted cost for fulltext keys in collaboration with Sergei Golubchik.
- Most test changes caused by this patch is that table scans are changed
  to use indexes.
- Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get
  make checking number of potential IO blocks easier during debugging.
2023-02-02 23:57:30 +03:00
Monty
b66cdbd1ea Changing all cost calculation to be given in milliseconds
This makes it easier to compare different costs and also allows
the optimizer to optimizer different storage engines more reliably.

- Added tests/check_costs.pl, a tool to verify optimizer cost calculations.
  - Most engine costs has been found with this program. All steps to
    calculate the new costs are documented in Docs/optimizer_costs.txt

- User optimizer_cost variables are given in microseconds (as individual
  costs can be very small). Internally they are stored in ms.
- Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost
  (9 ms) to common SSD cost (400MB/sec).
- Removed cost calculations for hard disks (rotation etc).
- Changed the following handler functions to return IO_AND_CPU_COST.
  This makes it easy to apply different cost modifiers in ha_..time()
  functions for io and cpu costs.
  - scan_time()
  - rnd_pos_time() & rnd_pos_call_time()
  - keyread_time()
- Enhanched keyread_time() to calculate the full cost of reading of a set
  of keys with a given number of ranges and optional number of blocks that
  need to be accessed.
- Removed read_time() as keyread_time() + rnd_pos_time() can do the same
  thing and more.
- Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks.
  Used heap table costs for json_table. The rest are using default engine
  costs.
- Added the following new optimizer variables:
  - optimizer_disk_read_ratio
  - optimizer_disk_read_cost
  - optimizer_key_lookup_cost
  - optimizer_row_lookup_cost
  - optimizer_row_next_find_cost
  - optimizer_scan_cost
- Moved all engine specific cost to OPTIMIZER_COSTS structure.
- Changed costs to use 'records_out' instead of 'records_read' when
  recalculating costs.
- Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h.
  This allows one to change costs without having to compile a lot of
  files.
- Updated costs for filter lookup.
- Use a better cost estimate in best_extension_by_limited_search()
  for the sorting cost.
- Fixed previous issues with 'filtered' explain column as we are now
  using 'records_out' (min rows seen for table) to calculate filtering.
  This greatly simplifies the filtering code in
  JOIN_TAB::save_explain_data().

This change caused a lot of queries to be optimized differently than
before, which exposed different issues in the optimizer that needs to
be fixed.  These fixes are in the following commits.  To not have to
change the same test case over and over again, the changes in the test
cases are done in a single commit after all the critical change sets
are done.

InnoDB changes:
- Updated InnoDB to not divide big range cost with 2.
- Added cost for InnoDB (innobase_update_optimizer_costs()).
- Don't mark clustered primary key with HA_KEYREAD_ONLY. This will
  prevent that the optimizer is trying to use index-only scans on
  the clustered key.
- Disabled ha_innobase::scan_time() and ha_innobase::read_time() and
  ha_innobase::rnd_pos_time() as the default engine cost functions now
  works good for InnoDB.

Other things:
- Added  --show-query-costs (\Q) option to mysql.cc to show the query
  cost after each query (good when working with query costs).
- Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust
  the value that user is given. This is used to change cost from
  microseconds (user input) to milliseconds (what the server is
  internally using).
- Added include/my_tracker.h  ; Useful include file to quickly test
  costs of a function.
- Use handler::set_table() in all places instead of 'table= arg'.
- Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and
  shown in microseconds for the user but stored as milliseconds.
  This is to make the numbers easier to read for the user (less
  pre-zeros).  Implemented in 'Sys_var_optimizer_cost' class.
- In test_quick_select() do not use index scans if 'no_keyread' is set
  for the table. This is what we do in other places of the server.
- Added THD parameter to Unique::get_use_cost() and
  check_index_intersect_extension() and similar functions to be able
  to provide costs to called functions.
- Changed 'records' to 'rows' in optimizer_trace.
- Write more information to optimizer_trace.
- Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3)
  to calculate usage space of keys in b-trees. (Before we used numeric
  constants).
- Removed code that assumed that b-trees has similar costs as binary
  trees. Replaced with engine calls that returns the cost.
- Added Bitmap::find_first_bit()
- Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia).
- Added records_init and records_after_filter to POSITION to remember
  more of what best_access_patch() calculates.
- table_after_join_selectivity() changed to recalculate 'records_out'
  based on the new fields from best_access_patch()

Bug fixes:
- Some queries did not update last_query_cost (was 0). Fixed by moving
  setting thd->...last_query_cost in JOIN::optimize().
- Write '0' as number of rows for const tables with a matching row.

Some internals:
- Engine cost are stored in OPTIMIZER_COSTS structure.  When a
  handlerton is created, we also created a new cost variable for the
  handlerton. We also create a new variable if the user changes a
  optimizer cost for a not yet loaded handlerton either with command
  line arguments or with SET
  @@global.engine.optimizer_cost_variable=xx.
- There are 3 global OPTIMIZER_COSTS variables:
  default_optimizer_costs   The default costs + changes from the
                            command line without an engine specifier.
  heap_optimizer_costs      Heap table costs, used for temporary tables
  tmp_table_optimizer_costs The cost for the default on disk internal
                            temporary table (MyISAM or Aria)
- The engine cost for a table is stored in table_share. To speed up
  accesses the handler has a pointer to this. The cost is copied
  to the table on first access. If one wants to change the cost one
  must first update the global engine cost and then do a FLUSH TABLES.
  This was done to be able to access the costs for an open table
  without any locks.
- When a handlerton is created, the cost are updated the following way:
  See sql/keycaches.cc for details:
  - Use 'default_optimizer_costs' as a base
  - Call hton->update_optimizer_costs() to override with the engines
    default costs.
  - Override the costs that the user has specified for the engine.
  - One handler open, copy the engine cost from handlerton to TABLE_SHARE.
  - Call handler::update_optimizer_costs() to allow the engine to update
    cost for this particular table.
  - There are two costs stored in THD. These are copied to the handler
    when the table is used in a query:
    - optimizer_where_cost
    - optimizer_scan_setup_cost
- Simply code in best_access_path() by storing all cost result in a
  structure. (Idea/Suggestion by Igor)
2023-02-02 23:54:45 +03:00
Monty
2387ee9b45 Added 'records_out' and join_type to POSITION
records_out is the numbers of rows expected to be accepted from a table.
records_read is in contrast the number of rows that the optimizer excepts
to read from the engine.

This patch causes not plan changes. The differences in test results comes
from renaming "records" to "records_read" and printing of record_out in
the optimizer trace.

Other things:
- Renamed table_cond_selectivity() to table_after_join_selectivity()
  to make the purpose of the function more clear.
2023-02-02 22:25:24 +03:00
Monty
5e651c9aea Make the most important optimizer constants user variables
Variables added:
- optimizer_index_block_copy_cost
- optimizer_key_copy_cost
- optimizer_key_next_find_cost
- optimizer_key_compare_cost
- optimizer_row_copy_cost
- optimizer_where_compare_cost

Some rename of defines was done to make the internal defines similar to
the visible ones:
TIME_FOR_COMPARE -> WHERE_COST; WHERE_COST was also "inverted" to be
a number between 0 and 1 that is multiply with accepted records
(similar to other optimizer variables).
TIME_FOR_COMPARE_IDX -> KEY_COMPARE_COST. This is also inverted,
similar to TIME_FOR_COMPARE.
TIME_FOR_COMPARE_ROWID -> ROWID_COMPARE_COST. This is also inverted,
similar to TIME_FOR_COMPARE.

All default costs are identical to what they where before this patch.

Other things:
- Compare factor in get_merge_buffers_cost() was inverted.
- Changed namespace to static in filesort_utils.cc
2023-02-02 21:44:00 +03:00
Monty
b6215b9b20 Update row and key fetch cost models to take into account data copy costs
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.

The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path().  TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.

The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.

When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.

To remedy the above, the following key & row fetch related costs
has been added:

- The cost of fetching and using a row is now split into different costs:
  - key + Row fetch cost (as before) but multiplied with the variable
  'optimizer_cache_cost' (default to 0.5). This allows the user to
  tell the optimizer the likehood of finding the key and row in the
  engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
  sql layer or creating a row from the join_cache to the record
  buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
  the engine to the SQL layer. This is used when we calculate the cost
  index only reads. It makes index scans more expensive than before if
  they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
  This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
  when doing a index scan and comparing the rowid to the filter.
  Before this cost was assumed to be 0.

All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other.  There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.

To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
  account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
  ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
  TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
  into account.  This is used with filesort where we don't need
  to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
  optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
  KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
  optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
  KEY_COPY_COST & TIME_FOR_COMPARE.

I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
  temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
  table.

When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.

Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.

In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).

The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.

Detailed list of changes:

- Calculate index_only_cost consistently and correctly for all scan
  and ref accesses. The row fetch_cost and index_only_cost now
  takes into account clustered keys, covered keys and index
  only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
  similar costs. This is bases on the assumption that data is more
  often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
  TIME_FOR_COMPARE. Now all scan costs takes this into
  account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
  adjusting this on can reduce or increase the cost of index or direct
  record lookups. The effect of the default is that key lookups is now
  a bit cheaper than before. See usage of 'optimizer_cache_cost' in
  handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
  which produced a wrong cost when index scan was used. Changed
  JOIN_TAB:::scan_time() to take into consideration clustered and
  covered keys. The values are now cached and we only have to call
  this function once. Other calls are changed to use the cached
  values.  Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
  more close to 'range' calculations. The cost is now lower than
  before for small data sets and higher for large data sets as we take
  into account how many keys are read (main.opt_trace_selectivity,
  main.limit_rows_examined).
- Ensured that index_scan_cost() ==
  range(scan_of_all_rows_in_table_using_one_range) +
  MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
  is choice of doing a full index scan and a range-index scan over
  almost the whole table then index scan will be preferred (no
  range-read setup cost).  (innodb.innodb, main.show_explain,
  main.range)
  - Fixed the EQ_REF and REF takes into account clustered and covered
    keys.  This changes some plans to use covered or clustered indexes
    as these are much cheaper.  (main.subselect_mat_cost,
    main.state_tables_innodb, main.limit_rows_examined)
  - Rowid filter setup cost and filter compare cost now takes into
    account fetching and checking the rowid (KEY_NEXT_FIND_COST).
    (main.partition_pruning heap.heap_btree main.log_state)
  - Added KEY_NEXT_FIND_COST to
    Range_rowid_filter_cost_info::lookup_cost to account of the time
    to find and check the next key value against the container
  - Introduced ha_keyread_time(rows) that takes into account finding
    the next row and copying the key value to 'record'
    (KEY_COPY_COST).
  - Introduced ha_key_scan_time() for calculating an index scan over
    all rows.
  - Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
  - Added index_only_fetch_cost() as a convenience function to
    OPT_RANGE.
  - keyread_time() cost is slightly reduced to prefer shorter keys.
    (main.index_merge_myisam)
  - All of the above caused some index_merge combinations to be
    rejected because of cost (main.index_intersect). In some cases
    'ref' where replaced with index_merge because of the low
    cost calculation of get_sweep_read_cost().
  - Some index usage moved from PRIMARY to a covering index.
    (main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
  TIME_FOR_COMPARE into account.  See sql_select.cc::apply_filter().
  filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
  of filtered rows for ranges. The reason is that we want to ensure
  that 'range' is calculated similar to 'ref'. There is also more work
  needed to calculate the selectivity when using ranges and ranges and
  filtering.  This causes filtering column in EXPLAIN EXTENDED to be
  100.00 for some cases where range cannot use filtering.
  (main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
  finding the next row and copying the row from the engine to
  'record'. This causes costs of table scan to slightly increase and
  some test to changed their plan from ALL to RANGE or ALL to ref.
  (innodb.innodb_mysql, main.select_pkeycache)
  In a few cases where scan time of very small tables have lower cost
  than a ref or range, things changed from ref/range to ALL.
  (main.myisam, main.func_group, main.limit_rows_examined,
  main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
  but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
  materialization. This causes some very small tables to use scan
  instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
  accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
  to ensure that the 'Last_query_cost' status variable contains the
  same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
  handler::read_time(). This should have no effect as it's 1.0 by
  default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
  adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
  just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
  preceding tables (as have to restore all fields for all previous
  table combination when checking the where clause)
  The new cost added is:
  (row_combinations * ROW_COPY_COST * number_of_cached_tables).
  This increases the cost of join buffering in proportion of the
  number of tables in the join buffer. One effect is that full scans
  are now done earlier as the cost is then smaller.
  (main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
  caused wrong plans to be created; It prefered JT_EQ_REF even if it
  would be much more expensive than a full table scan. A related
  issue was that worst_seeks only applied to full lookup, not to
  clustered or index only lookups, which is not consistent. This
  caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
  typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
  caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
  - More costs, especially for materialization and index_merge.
  - Make lables more uniform
  - Fixed a lot of minor bugs
  - Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
  the cost did not take into account the number of row retrivals
  that has to be done or the cost of comparing the rows with the
  WHERE clause. The cost calculated would be just a fraction of
  the real cost. Now we calculate the cost as we do for ranges
  and 'ref'.
- 'Using index for group-by' is used a bit more than before as
  now take into account the WHERE clause cost when comparing
  with 'ref' and prefer the method with fewer row combinations.
  (main.group_min_max).

Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
  like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
  index when displaying 'Using index'. This caused some old plans to
  show 'Using index'.  (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
  updated, and the cost we compared with was not the one that was
  used.
- Fixed very wrong cost calculation for priority queues in
  check_if_pq_applicable(). (main.order_by now correctly uses priority
  queue)
- When calculating cost of EQ_REF or REF, we added the cost of
  comparing the WHERE clause with the found rows, not all row
  combinations. This made ref and eq_ref to be regarded way to cheap
  compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
  covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
  cost of a JT_REF key. This may be true for InnoDB primary key, but
  not for other unique keys or other engines. Now we use handler
  function to calculate the cost, which allows us to handle
  consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
  enabled but still changed the 'keyread' variable (which is wrong).
  Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
  calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
  record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
  and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
  means that the cost for hash_joins more expensive than calculated
  in best_access_path (a difference of 10x * TIME_OF_COMPARE).
  This is fixed in the new code thanks to that we now include
  TIME_OF_COMPARE cost in 'read_time'.

Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
  (No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
  to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h

Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
  This is because the cost of doing a range fetch of lineitem(98 rows) is
  almost as big as the whole join of order,lineitem. The filtering will
  also ensure that we only have to do very small key fetches of the rows
  in lineitem.
- main.index_merge_myisam had a few changes where we are now using
  less keys for index_merge. This is because index scans are now more
  expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
  This ensures that it is up to date per statements.
  Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
  filesort into consideration when table scan is chosen.
  (main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
  on a table with 1 row will now use table scan instead of key lookup.

TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
  when there is a ref access but scan is chosen.
  For this we have to store the lowest known value for
  'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
  costs. This will fix tests like main.order_by_innodb,
  main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
  cost_for_index_read() if there where no quick keys. This will reduce
  the computed cost for ORDER BY with LIMIT in some cases.
  (main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
  of rows we have to read when considering using a index table scan to
  resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
  benefit of reading multiple rows from the same page.
2023-02-02 21:43:30 +03:00
Monty
766bae2b31 Make trace.add() usage uniform
- Before any multiple add() calls, always use (if trace_started()).
- Add unlikely() around all tests of trace_started().
- Change trace.add(); trace.add(); to trace.add().add();
- When trace.add() goes over several line, use the following formating:
trace.
 add(xxx).
 add(yyy).
 add(zzz);

This format was choosen after a discussion between Sergei Petrunia and
me as it looks similar indepedent if 'trace' is an object or a
pointer. It also more suitable for an editors auto-indentation.

Other things:

Added DBUG_ASSERT(thd->trace_started()) to a few functions that should
only be called if trace is enabled.

"use_roworder_index_merge: true" changed to "use_sort_index_merge: false"
As the original output was often not correct.
Also fixed the related 'cause' to be correct.

In best_access_path() print the cost (and number of rows) before
checking if it the plan should be used. This removes the need to print
the cost in two places.

Changed a few "read_time" tags to "cost".
2023-02-02 20:53:59 +03:00
Monty
956980971f Update cost for hash and cached joins
The old code did not't correctly add TIME_FOR_COMPARE to rows that are
part of the scan that will be compared with the attached where clause.

Now the cost calculation for hash join and full join cache join are
identical except for HASH_FANOUT (10%)

The cost for a join with keys is now also uniform.
The total cost for a using a key for lookup is calculated in one place as:

(cost_of_finding_rows_through_key(records) + records/TIME_FOR_COMPARE)*
record_count_of_previous_row_combinations + startup_cost

startup_cost is the cost of a creating a temporary table (if needed)

Best_cost now includes the cost of comparing all WHERE clauses and also
cost of joining with previous row combinations.

Other things:
- Optimizer trace is now printing the total costs, including testing the
  WHERE clause (TIME_FOR_COMPARE) and comparing with all previous rows.
- In optimizer trace, include also total cost of query together with the
  final join order. This makes it easier to find out where the cost was
  calculated.
- Old code used filter even if the cost for it was higher than not using a
  filter. This is not corrected.
- When rebasing on 10.11, I noticed some changes to access_cost_factor
  calculation. These changes was not picked as the coming changes
  to filtering will make that code obsolete.
2023-02-02 20:49:35 +03:00
Monty
07b0d1a35d Adjusted Range_rowid_filter_cost_info lookup cost slightly.
If the array size would be 1, the cost would be 0 which is wrong.
Fixed by adding a small (0.001) base value to the lookup cost.

This causes not changes in any result files.
2023-01-30 15:24:15 +02:00
Monty
bcd5454beb Change class variable names in rowid_filter to longer, more clear names
No code logic changes was done

a     -> gain
b     -> cost_of_building_range_filter
a_adj -> gain_adj
r     -> row_combinations

Other things:
- Optimized the layout of class Range_rowid_filter_cost_info.
  One effect was that I moved key_no to the private section to get
  better alignment and had to introduce a get_key_no() function.
- Indentation changes in rowid_filter.cc to avoid long rows.
2023-01-30 15:24:12 +02:00
Monty
4062fc28bd Optimizer code cleanups, no logic changes
- Updated comments
- Added some extra DEBUG
- Indentation changes and break long lines
- Trivial code changes like:
  - Combining 2 statements in one
  - Reorder DBUG lines
  - Use a variable to store a pointer that is used multiple times
- Moved declaration of variables to start of loop/function
- Removed dead or commented code
- Removed wrong DBUG_EXECUTE code in best_extension_by_limited_search()
2023-01-30 15:22:21 +02:00
Oleksandr Byelkin
cf63eecef4 Merge branch '10.4' into 10.5 2022-02-01 20:33:04 +01:00
Monty
c18896f9c1 MDEV-14907 FEDERATEDX doesn't respect DISTINCT
Federated and Federatex cannot be used with ROR scans

Federated::position() and Federatex::position() is storing in 'ref' a
pointer into a local result set buffer. This means that one cannot
compare 'ref' from different handler instances to see if they point to the
same physical record.

This bug caused federated.federatedx to return wrong results when the
optimizer tried to use index_merge to resolve some queries.

Fixed by introducing table flag HA_NON_COMPARABLE_ROWID and using this
with the above handlers.

Todo:
- Fix multi_delete(), multi_update and read_records() to use primary key
  instead of 'ref' if case HA_NON_COMPARABLE_ROWID is set. The current
  code only works if we have only one range (like table scan) for the
  tables that will be updated in the second pass.
- Enable DBUG_ASSERT() in ha_federated::cmp_ref() and
  ha_federatedx::cmp_ref().
2022-01-05 16:52:39 +02:00
Monty
6cee9b1953 MDEV-22535 TABLE::initialize_quick_structures() takes 0.5% in oltp_read_only
Fixed by:
- Make all quick_* variable allocated according to real number keys instead
  of MAX_KEY
- Store all the quick* items in separated allocated structure (OPT_RANGE)
- Ensure we don't access any quick* variable without first checking
  opt_range_keys.is_set().  Thanks to this, we don't need any
  pre-initialization of quick* variables anymore.

Some renames was done to use the new structure:
table->quick_keys                -> table->opt_range_keys
table->quick_rows[X]             -> table->opt_range[X].rows
table->quick_key_parts[X]        -> table->opt_range[X].key_parts
table->quick_costs[X]            -> table->opt_range[X].cost
table->quick_index_only_costs[X] -> table->opt_range[X].index_only_cost
table->quick_n_ranges[X]         -> table->opt_range[X].ranges
table->quick_condition_rows      -> table->opt_range_condition_rows

This patch should both decrease memory needed for TABLE objects
(3528 -> 984 + keyinfo) and increase performance, thanks to less
initializations per query, and more localized memory, thanks to the
opt_range structure.
2020-07-02 16:59:14 +03:00
Sergei Golubchik
13038e4705 Merge branch '10.4' into 10.5 2020-05-09 20:43:36 +02:00
Sergei Petrunia
8d85715d50 MDEV-21794: Optimizer flag rowid_filter leads to long query
Rowid Filter check is just like Index Condition Pushdown check: before
we check the filter, we must check if we have walked out of the range
we are scanning. (If we did, we should return, and not continue the scan).

Consequences of this:
- Rowid filtering doesn't work for keys that have partially-covered
  blob columns (just like Index Condition Pushdown)
- The rowid filter function has three return values: CHECK_POS (passed)
  CHECK_NEG (filtered out), CHECK_OUT_OF_RANGE.

All of the above is implemented in this patch
2020-05-07 12:27:17 +02:00
Marko Mäkelä
ccc06931c3 Merge 10.4 into 10.5 2020-04-08 10:36:41 +03:00
Sergei Petrunia
a219006636 MDEV-22014: Rowid Filtering is not displayed well in the optimizer trace
- Print the rowid filters that are available for use with each table.
- Make print_best_access_for_table() print which filter it has picked.
- Make best_access_path() print the filter for considered ref accesses.
2020-04-02 11:50:47 +03:00
Monty
37393bea23 Replace handler::primary_key_is_clustered() with handler::pk_is_clustering_key()
This was done to both simplify the code and also to be easier to handle
storage engines that are clustered on some other index than the primary
key.

As pk_is_clustering_key() and is_clustering_key now are using only
index_flags, these where removed from all storage engines.
2020-03-24 21:00:04 +02:00
Michael Widenius
6fd7a4b601 Fixed uninitialized bug in Range_rowid_filter_cost_info 2019-04-01 19:47:24 +03:00
Marko Mäkelä
2bd7f32980 MDEV-16188: Remove redundant !this ||
Fix clang warning: 'this' pointer cannot be null in well-defined C++ code;
pointer may be assumed to always convert to true

The only caller of TABLE::best_range_rowid_filter_for_partial_join()
already seems to be assuming that s->table != NULL.
2019-02-18 11:44:20 +02:00
Igor Babaev
ccce4d3be9 MDEV-16188 Post review fixes
Also adjusted some test files.
2019-02-14 15:23:23 -08:00
Igor Babaev
e1de23b8d5 MDEV-16188 Introduced the notion of adjusted filter gain.
Due to inconsistent usage of different cost models to calculate
the cost of ref accesses we have to make the calculation of the
gain promising by usage a range filter more complex.
2019-02-14 00:17:20 -08:00
Galina Shalygina
3955d2a153 MDEV-18413: Find constraint correlated indexes
Find indexes of one table which parts participate in one constraint.
These indexes are called constraint correlated.

New methods: TABLE::find_constraint_correlated_indexes() and
virtual method check_index_dependence() were added.
For each index it's own constraint correlated index map was created
where all indexes that are constraint correlated with the current are
marked.

The results of this task are used for MDEV-16188 (Use in-memory
PK filters built from range index scans).
2019-02-10 22:36:46 +03:00
Igor Babaev
9e114455a9 MDEV-16188 Post merge fixes:fixed warnings on Windows
Also adjusted some result files after Galina's last patch for ANALYZE.
2019-02-06 15:56:21 -08:00
Galina Shalygina
447e0f023f MDEV-18144: ANALYZE for statement support for PK filters
ANALYZE and ANALYZE FORMAT=JSON structures are changed in the way that they
show additional information when rowid filter is used:

- r_selectivity_pct - the observed filter selectivity
- r_buffer_size - the size of the rowid filter container buffer
- r_filling_time_ms - how long it took to fill rowid filter container

New class Rowid_filter_tracker was added. This class is needed to collect data
about how rowid filter is executed.
2019-02-06 23:40:07 +03:00
Igor Babaev
658128af43 MDEV-16188 Use in-memory PK filters built from range index scans
This patch contains a full implementation of the optimization
that allows to use in-memory rowid / primary filters built for range  
conditions over indexes. In many cases usage of such filters reduce  
the number of disk seeks spent for fetching table rows.

In this implementation the choice of what possible filter to be applied  
(if any) is made purely on cost-based considerations.

This implementation re-achitectured the partial implementation of
the feature pushed by Galina Shalygina in the commit
8d5a11122c32f4d9eb87536886c6e893377bdd07.

Besides this patch contains a better implementation of the generic  
handler function handler::multi_range_read_info_const() that
takes into account gaps between ranges when calculating the cost of
range index scans. It also contains some corrections of the
implementation of the handler function records_in_range() for MyISAM.

This patch supports the feature for InnoDB and MyISAM.
2019-02-03 14:56:12 -08:00
Galina Shalygina
8d5a11122c MDEV-16188: Use in-memory PK filters built from range index scans
First phase: make optimizer choose to use filter and show it in EXPLAIN.
2018-09-28 23:50:22 +03:00