1
0
mirror of https://github.com/MariaDB/server.git synced 2025-07-23 08:45:18 +03:00
Commit Graph

45 Commits

Author SHA1 Message Date
d6444022ca Merge branch 'bb-11.5-release' into bb-11.6-release 2024-08-06 17:28:38 +02:00
ea75a0b600 Merge branch '11.4' into 11.5 2024-08-05 17:50:18 +02:00
80abd847da Merge branch '10.11' into 11.1 2024-08-03 09:32:42 +02:00
0fe39d368a Merge branch '10.6' into 10.11 2024-07-22 15:14:50 +02:00
f071b7620b Merge branch '10.5' into 10.6 2024-07-16 15:54:22 +08:00
aae3233c4f MDEV-34041 Display additional information for materialized subqueries in EXPLAIN/ANALYZE FORMAT=JSON
This commits adds the "materialization" block to the output of
EXPLAIN/ANALYZE FORMAT=JSON when materialized subqueries are involved
into processing. In the case of ANALYZE additional runtime information
is displayed, such as:
  - chosen strategy of materialization
  - number of partial match/index lookup loops
  - sizes of partial match buffers
2024-07-11 17:40:39 +07:00
36eba98817 MDEV-19123 Change default charset from latin1 to utf8mb4
Changing the default server character set from latin1 to utf8mb4.
2024-07-11 10:21:07 +04:00
0940a96940 MDEV-18478 ANALYZE for statement should show selectivity of ICP, part#2
Part#2, variant 2: Make the printed r_ values in JSON output consistent.
After this patch, ANALYZE output has:

- r_index_rows (NEW) - Observed number of rows before ICP or Rowid Filtering
  checks. This is a per-scan average. like r_rows and "rows" are.

- r_rows (AS BEFORE) - Observed number of rows after ICP and Rowid Filtering.

- r_icp_filtered (NEW) - Observed selectivity of ICP condition.

- (AS BEFORE) observed selectivity of Rowid Filter is in
  $.rowid_filter.r_selectivity_pct

- r_total_filtered - Observed combined selectivity: fraction of rows left
  after applying ICP condition, Rowid Filter, and attached_condition.
  This is now comparable with "filtered" and is printed right after it.

- r_filtered (AS BEFORE) - Observed selectivity of "attached_condition".

Tabular ANALYZE output is not changed. Note that JSON's r_filtered and
r_rows have the same meanings as before and have the same meaning as in
tabular output.
2024-04-23 22:55:22 +03:00
6cfd2ba397 Merge branch '10.4' into 10.5 2023-11-08 12:59:00 +01:00
4ed5900626 ANALYZE FORMAT=JSON: Backport block-nl-join.r_unpack_time_ms from 11.0 +fix MDEV-30830.
Also fix it to work with hashed join (MDEV-30830).

Reviewed by: Monty <monty@mariadb.org>
2023-10-27 15:45:00 +02:00
f2b4972bd4 Merge 10.11 into 11.0 2023-07-26 15:13:06 +03:00
bce3ee704f Merge 10.10 into 10.11 2023-07-26 14:44:43 +03:00
864bbd4d09 Merge 10.6 into 10.9 2023-07-26 13:42:23 +03:00
6e484c3bd9 MDEV-31577: Make ANALYZE FORMAT=JSON print innodb stats
ANALYZE FORMAT=JSON output now includes table.r_engine_stats which
has the engine statistics. Only non-zero members are printed.

Internally: EXPLAIN data structures Explain_table_acccess and
Explain_update now have handler* handler_for_stats pointer.
It is used to read statistics from handler_for_stats->handler_stats.

The following applies only to 10.9+, backport doesn't use it:

Explain data structures exist after the tables are closed. We avoid
walking invalid pointers using this:
- SQL layer calls Explain_query::notify_tables_are_closed() before
  closing tables.
- After that call, printing of JSON output is disabled. Non-JSON output
  can be printed but we don't access handler_for_stats when doing that.
2023-07-21 16:50:11 +03:00
f25a74c0b0 Fixed typo on opt_range.cc: SEL_ARG::number_of_eq_groups()
It could cause wrong range estimation for GROUP BY queries that are
using 'WHERE index_part >= constant'.
(The function was trying to check for 'index_part = constant')

Reporter: Yuty Chaikou
2023-06-18 12:11:18 +03:00
c7fe8e51de Merge 10.11 into 11.0 2023-04-17 16:50:01 +03:00
656c2e18b1 Merge 10.10 into 10.11 2023-04-14 13:08:28 +03:00
1d1e0ab2cc Merge 10.6 into 10.8 2023-04-12 15:50:08 +03:00
31536b2477 MDEV-30972: ANALYZE FORMAT=JSON: some time is unaccounted-for in BNL-H join
After MDEV-30830 has added block-nl-join.r_unpack_time_ms, it became
apparent that there is some unaccounted-for time in BNL join operation,
namely the time that is spent after unpacking the join buffer record.

Fix this by adding a Gap_time_tracker to track the time that is spent
after unpacking the join buffer record and before any next time tracking.
The collected time is printed in block-nl-join.r_other_time_ms.

Reviewed by: Monty <monty@mariadb.org>
2023-04-04 12:18:37 +03:00
0269d82d53 ANALYZE FORMAT=JSON: Backport block-nl-join.r_unpack_time_ms from 11.0 +fix MDEV-30830.
Also fix it to work with hashed join (MDEV-30830).

Reviewed by: Monty <monty@mariadb.org>
2023-04-04 12:18:29 +03:00
dc1d6213f9 MDEV-30806: ANALYZE FORMAT=JSON: better support for BNL and BNL-H joins
In block-nl-join, add:

- r_loops - this shows how many incoming record combinations this
  query plan node had.

- r_effective_rows - this shows the average number of matching rows
  that this table had for each incoming record combination. This is
  comparable with r_rows in non-blocked access methods.
  For BNL-joins, it is always equal to
   $.table.r_rows * $.table.r_filtered
  For BNL-H joins the value cannot be computed from other values

Reviewed by: Monty <monty@mariadb.org>
2023-03-31 14:11:32 +03:00
7a277a3352 Allow firstmatch to use HASH joins
Firstmatch_picker::check_qep() has an optimization that allows firstmatch
to be used together with join buffer under some conditions. In this
case the cost was assumed to be same as what best_access_path()
had calculated.

However if HASH+join_buffer was used, then
fix_semijoin_strategies_for_picked_join_order() would remove the
join_buffer (which would cause a full join to be used) and the cost
assumption by Firstmatch_picker::check_qep() would be wrong.
Later check_join_cache_usage() sees that it's a full scan and decides
it can use join buffering, (But not the hash join).

Fixed by also allowing HASH joins with firstmatch.
This removes the need to change disable and re-enable join buffer.

Test case changes:
- HASH join used with firstmatch (Using join buffer (flat, BNLH join))
- Filtered could change with firstmatch as the conversion with and without
  join_buffered lost the filtering information.
- The not "re-enabling join buffer" is shown in main.optimizer_trace

Original code by Sergei, optimized by Monty.

Author: Sergei Petrunia <sergey@mariadb.com>, monty@mariadb.org
2023-03-07 14:27:26 +02:00
3fa99f0c0e Change cost for REF to take into account cost for 1 extra key read_next
The main difference in code path between EQ_REF and REF is that for
REF we have to do an extra read_next on the index to check that there
is no more matching rows.

Before this patch we added a preference of EQ_REF by ensuring that REF
would always estimate to find at least 2 rows.

This patch adds the cost of the extra key read_next to REF access and
removes the code that limited REF to at least 2 rows. For some queries
this can have a big effect as the total estimated rows will be halved
for each REF table with 1 rows.

multi_range cost calculations are also changed to take into account
the difference between EQ_REF and REF.

The effect of the patch to the test suite:
- About 80 test case changed
- Almost all changes where for EXPLAIN where estimated rows for REF
  where changed from 2 to 1.
- A few test cases using explain extended had a change of 'filtered'.
  This is because of the estimated rows are now closer to the
  calculated selectivity.
- A very few test had a change of table order.
  This is because the change of estimated rows from 2 to 1 or the small
  cost change for REF
  (main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown,
  main.distinct, main.join_nested, main.order_by, main.join_cache)
- No key statistics and the estimated rows are now smaller which cased
  estimated filtering to be lower.
  (main.subselect_sj_mat)
- The number of total rows are halved.
  (main.derived_cond_pushdown)
- Plans with 1 row changed to use RANGE instead of REF.
  (main.group_min_max)
- ALL changed to REF
  (main.key_diff)
- Key changed from ref + index_only to PRIMARY key for InnoDB, as
  OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than
  OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST.
  (main.join_outer_innodb)
- Cost changes printouts
  (main.opt_trace*)
- Result order change
  (innodb_gis.rtree)
2023-02-10 12:58:50 +02:00
6c4076fac4 MDEV-30032: EXPLAIN FORMAT=JSON output: part #2: print 'loops'. 2023-02-03 11:22:17 +03:00
ffe0beca25 MDEV-30032: EXPLAIN FORMAT=JSON output: print costs
Basic printout for join and table execution costs.
2023-02-03 11:01:24 +03:00
727491b72a Added test cases for preceding test
This includes all test changes from
"Changing all cost calculation to be given in milliseconds"
and forwards.

Some of the things that caused changes in the result files:

- As part of fixing tests, I added 'echo' to some comments to be able to
  easier find out where things where wrong.
- MATERIALIZED has now a higher cost compared to X than before. Because
  of this some MATERIALIZED types have changed to DEPENDEND SUBQUERY.
  - Some test cases that required MATERIALIZED to repeat a bug was
    changed by adding more rows to force MATERIALIZED to happen.
- 'Filtered' in SHOW EXPLAIN has in many case changed from 100.00 to
  something smaller. This is because now filtered also takes into
  account the smallest possible ref access and filters, even if they
  where not used. Another reason for 'Filtered' being smaller is that
  we now also take into account implicit filtering done for subqueries
  using FIRSTMATCH.
  (main.subselect_no_exists_to_in)
  This is caluculated in best_access_path() and stored in records_out.
- Table orders has changed because more accurate costs.
- 'index' and 'ALL' for small tables has changed to use 'range' or
   'ref' because of optimizer_scan_setup_cost.
- index can be changed to 'range' as 'range' optimizer assumes we don't
  have to read the blocks from disk that range optimizer has already read.
  This can be confusing in the case where there is no obvious where clause
  but instead there is a hidden 'key_column > NULL' added by the optimizer.
  (main.subselect_no_exists_to_in)
- Scan on primary clustered key does not report 'Using Index' anymore
  (It's a table scan, not an index scan).
- For derived tables, the number of rows is now 100 instead of 2,
  which can be seen in EXPLAIN.
- More tests have "Using index for group by" as the cost of this
  optimization is now more correct (lower).
- A primary key could be preferred for a normal key, even if it would
  access more rows, as it's faster to do 1 lokoup and 3 'index_next' on a
  clustered primary key than one lookup trough a secondary.
  (main.stat_tables_innodb)

Notes:

- There was a 4.7% more calls to best_extension_by_limited_search() in
  the main.greedy_optimizer test.  However examining the test results
  it looked that the plans where slightly better (eq_ref where more
  chained together) so I assume this is ok.
- I have verified a few test cases where there was notable/unexpected
  changes in the plan and in all cases the new optimizer plans where
  faster.  (main.greedy_optimizer and some others)
2023-02-03 00:00:35 +03:00
4515a89814 Fixed cost calculations for materialized tables
One effect of this change in the test suite is that tests with very few
rows changed to use sub queries instead of materialization. This is
correct and expected as for these the materialization overhead is too high.

A lot of tests where fixed to still use materialization by adding a
few rows to the tables (most tests has only 2-3 rows and are thus easily
affected when cost computations are changed).

Other things:
- Added more variables to TMPTABLE_COSTS for better cost calculation
- Added cost of copying rows to TMPTABLE_COSTS lookup and write
- Added THD::optimizer_cache_hit_ratio for easier cost calculations
- Added DISK_FAST_READ_SIZE to be used when calculating costs when
  reading big blocks from a disk
2023-02-02 22:58:38 +03:00
b6215b9b20 Update row and key fetch cost models to take into account data copy costs
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.

The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path().  TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.

The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.

When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.

To remedy the above, the following key & row fetch related costs
has been added:

- The cost of fetching and using a row is now split into different costs:
  - key + Row fetch cost (as before) but multiplied with the variable
  'optimizer_cache_cost' (default to 0.5). This allows the user to
  tell the optimizer the likehood of finding the key and row in the
  engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
  sql layer or creating a row from the join_cache to the record
  buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
  the engine to the SQL layer. This is used when we calculate the cost
  index only reads. It makes index scans more expensive than before if
  they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
  This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
  when doing a index scan and comparing the rowid to the filter.
  Before this cost was assumed to be 0.

All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other.  There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.

To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
  account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
  ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
  TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
  into account.  This is used with filesort where we don't need
  to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
  optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
  KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
  optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
  KEY_COPY_COST & TIME_FOR_COMPARE.

I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
  temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
  table.

When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.

Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.

In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).

The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.

Detailed list of changes:

- Calculate index_only_cost consistently and correctly for all scan
  and ref accesses. The row fetch_cost and index_only_cost now
  takes into account clustered keys, covered keys and index
  only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
  similar costs. This is bases on the assumption that data is more
  often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
  TIME_FOR_COMPARE. Now all scan costs takes this into
  account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
  adjusting this on can reduce or increase the cost of index or direct
  record lookups. The effect of the default is that key lookups is now
  a bit cheaper than before. See usage of 'optimizer_cache_cost' in
  handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
  which produced a wrong cost when index scan was used. Changed
  JOIN_TAB:::scan_time() to take into consideration clustered and
  covered keys. The values are now cached and we only have to call
  this function once. Other calls are changed to use the cached
  values.  Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
  more close to 'range' calculations. The cost is now lower than
  before for small data sets and higher for large data sets as we take
  into account how many keys are read (main.opt_trace_selectivity,
  main.limit_rows_examined).
- Ensured that index_scan_cost() ==
  range(scan_of_all_rows_in_table_using_one_range) +
  MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
  is choice of doing a full index scan and a range-index scan over
  almost the whole table then index scan will be preferred (no
  range-read setup cost).  (innodb.innodb, main.show_explain,
  main.range)
  - Fixed the EQ_REF and REF takes into account clustered and covered
    keys.  This changes some plans to use covered or clustered indexes
    as these are much cheaper.  (main.subselect_mat_cost,
    main.state_tables_innodb, main.limit_rows_examined)
  - Rowid filter setup cost and filter compare cost now takes into
    account fetching and checking the rowid (KEY_NEXT_FIND_COST).
    (main.partition_pruning heap.heap_btree main.log_state)
  - Added KEY_NEXT_FIND_COST to
    Range_rowid_filter_cost_info::lookup_cost to account of the time
    to find and check the next key value against the container
  - Introduced ha_keyread_time(rows) that takes into account finding
    the next row and copying the key value to 'record'
    (KEY_COPY_COST).
  - Introduced ha_key_scan_time() for calculating an index scan over
    all rows.
  - Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
  - Added index_only_fetch_cost() as a convenience function to
    OPT_RANGE.
  - keyread_time() cost is slightly reduced to prefer shorter keys.
    (main.index_merge_myisam)
  - All of the above caused some index_merge combinations to be
    rejected because of cost (main.index_intersect). In some cases
    'ref' where replaced with index_merge because of the low
    cost calculation of get_sweep_read_cost().
  - Some index usage moved from PRIMARY to a covering index.
    (main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
  TIME_FOR_COMPARE into account.  See sql_select.cc::apply_filter().
  filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
  of filtered rows for ranges. The reason is that we want to ensure
  that 'range' is calculated similar to 'ref'. There is also more work
  needed to calculate the selectivity when using ranges and ranges and
  filtering.  This causes filtering column in EXPLAIN EXTENDED to be
  100.00 for some cases where range cannot use filtering.
  (main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
  finding the next row and copying the row from the engine to
  'record'. This causes costs of table scan to slightly increase and
  some test to changed their plan from ALL to RANGE or ALL to ref.
  (innodb.innodb_mysql, main.select_pkeycache)
  In a few cases where scan time of very small tables have lower cost
  than a ref or range, things changed from ref/range to ALL.
  (main.myisam, main.func_group, main.limit_rows_examined,
  main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
  but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
  materialization. This causes some very small tables to use scan
  instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
  accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
  to ensure that the 'Last_query_cost' status variable contains the
  same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
  handler::read_time(). This should have no effect as it's 1.0 by
  default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
  adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
  just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
  preceding tables (as have to restore all fields for all previous
  table combination when checking the where clause)
  The new cost added is:
  (row_combinations * ROW_COPY_COST * number_of_cached_tables).
  This increases the cost of join buffering in proportion of the
  number of tables in the join buffer. One effect is that full scans
  are now done earlier as the cost is then smaller.
  (main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
  caused wrong plans to be created; It prefered JT_EQ_REF even if it
  would be much more expensive than a full table scan. A related
  issue was that worst_seeks only applied to full lookup, not to
  clustered or index only lookups, which is not consistent. This
  caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
  typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
  caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
  - More costs, especially for materialization and index_merge.
  - Make lables more uniform
  - Fixed a lot of minor bugs
  - Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
  the cost did not take into account the number of row retrivals
  that has to be done or the cost of comparing the rows with the
  WHERE clause. The cost calculated would be just a fraction of
  the real cost. Now we calculate the cost as we do for ranges
  and 'ref'.
- 'Using index for group-by' is used a bit more than before as
  now take into account the WHERE clause cost when comparing
  with 'ref' and prefer the method with fewer row combinations.
  (main.group_min_max).

Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
  like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
  index when displaying 'Using index'. This caused some old plans to
  show 'Using index'.  (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
  updated, and the cost we compared with was not the one that was
  used.
- Fixed very wrong cost calculation for priority queues in
  check_if_pq_applicable(). (main.order_by now correctly uses priority
  queue)
- When calculating cost of EQ_REF or REF, we added the cost of
  comparing the WHERE clause with the found rows, not all row
  combinations. This made ref and eq_ref to be regarded way to cheap
  compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
  covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
  cost of a JT_REF key. This may be true for InnoDB primary key, but
  not for other unique keys or other engines. Now we use handler
  function to calculate the cost, which allows us to handle
  consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
  enabled but still changed the 'keyread' variable (which is wrong).
  Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
  calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
  record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
  and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
  means that the cost for hash_joins more expensive than calculated
  in best_access_path (a difference of 10x * TIME_OF_COMPARE).
  This is fixed in the new code thanks to that we now include
  TIME_OF_COMPARE cost in 'read_time'.

Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
  (No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
  to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h

Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
  This is because the cost of doing a range fetch of lineitem(98 rows) is
  almost as big as the whole join of order,lineitem. The filtering will
  also ensure that we only have to do very small key fetches of the rows
  in lineitem.
- main.index_merge_myisam had a few changes where we are now using
  less keys for index_merge. This is because index scans are now more
  expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
  This ensures that it is up to date per statements.
  Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
  filesort into consideration when table scan is chosen.
  (main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
  on a table with 1 row will now use table scan instead of key lookup.

TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
  when there is a ref access but scan is chosen.
  For this we have to store the lowest known value for
  'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
  costs. This will fix tests like main.order_by_innodb,
  main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
  cost_for_index_read() if there where no quick keys. This will reduce
  the computed cost for ORDER BY with LIMIT in some cases.
  (main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
  of rows we have to read when considering using a index table scan to
  resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
  benefit of reading multiple rows from the same page.
2023-02-02 21:43:30 +03:00
ad7631bdce MDEV-28926 Add time spent on query optimizer to JSON ANALYZE (#2193)
* Add query optimizer timer to ANALYZE FORMAT=JSON

* Adapt tests and results

* Change logic to always close the writer after printing query blocks
2022-10-26 09:18:29 +03:00
133c2129cd Merge 10.7 into 10.8 2022-04-27 10:43:00 +03:00
fae0ccad6e Merge 10.5 into 10.6 2022-04-21 17:46:40 +03:00
620c55e708 Merge 10.4 into 10.5 2022-04-21 15:33:50 +03:00
394784095e Merge 10.3 into 10.4 2022-04-21 11:33:59 +03:00
7498978e6a MDEV-27699 ANALYZE FORMAT=JSON fields are incorrect for UNION ALL queries
UNION ALL queries are a subject of optimization introduced in MDEV-334
when creation of a temporary table is skipped.
While there is a check for this optimization in Explain_union::print_explain()
there was no such in Explain_union::print_explain_json(). This resulted in
printing irrelevant data like:
  "union_result": {
    "table_name": "<union2,3>",
    "access_type": "ALL",
    "r_loops": 0,
    "r_rows": null
in case when creation of the temporary table was actually optimized out.
This commits adds a check whether the temporary table was actually created
during the UNION ALL processing and eliminates printing of the irrelevant data.
2022-04-18 07:50:14 +03:00
ea94895369 MDEV-27206: [ERROR] Duplicated key: cause, Assertion `is_uniq_key' failed with optimizer trace 2021-12-10 22:12:01 +02:00
c88e37ff85 MDEV-27204: [ERROR] Json_writer: a member name was expected, Assertion `got_name
[Adjusting Sergei Krivonos's patch]

"duplicates_removal" may contain multiple elements inside it and
so should have a JSON array as a value (and not object).
2021-12-09 16:49:40 +03:00
73df7a3009 MDEV-27036: resolve duplicated key issues of JSON tracing outputs:
MDEV-27036: repeated "table" key resolve for print_explain_json

MDEV-27036: duplicated keys in best_access_path

MDEV-27036: Explain_aggr_filesort::print_json_members: resolve duplicated "filesort" member in Json object

MDEV-27036: Explain_basic_join::
            print_explain_json_interns fixed start_dups_weedout case for main.explain_json test
2021-11-26 15:11:06 +02:00
2fdb556e04 MDEV-8334: Rename utf8 to utf8mb3
This patch changes the main name of 3 byte character set from utf8 to
utf8mb3. New old_mode UTF8_IS_UTF8MB3 is added and set TRUE by default,
so that utf8 would mean utf8mb3. If not set, utf8 would mean utf8mb4.
2021-05-19 06:48:36 +02:00
eb483c5181 Updated optimizer costs in multi_range_read_info_const() and sql_select.cc
- multi_range_read_info_const now uses the new records_in_range interface
- Added handler::avg_io_cost()
- Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is
  not 1.0.  In this case we trust the avg_io_cost() from the handler.
- Changed test_quick_select to use TIME_FOR_COMPARE instead of
  TIME_FOR_COMPARE_IDX to align this with the rest of the code.
- Fixed bug when using test_if_cheaper_ordering where we didn't use
  keyread if index was changed
- Fixed a bug where we didn't use index only read when using order-by-index
- Added keyread_time() to HEAP.
  The default keyread_time() was optimized for blocks and not suitable for
  HEAP. The effect was the HEAP prefered table scans over ranges for btree
  indexes.
- Fixed get_sweep_read_cost() for HEAP tables
- Ensure that range and ref have same cost for simple ranges
  Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure
  we favior ref for range for simple queries.
- Fixed that matching_candidates_in_table() uses same number of records
  as the rest of the optimizer
- Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for
  HEAP and temporary tables better. A few tests changed because of this.
- heap::read_time() and heap::keyread_time() adjusted to not add +1.
  This was to ensure that handler::keyread_time() doesn't give
  higher cost for heap tables than for normal tables. One effect of
  this is that heap and derived tables stored in heap will prefer
  key access as this is now regarded as cheap.
- Changed cost for index read in sql_select.cc to match
  multi_range_read_info_const(). All index cost calculation is now
  done trough one function.
- 'ref' will now use quick_cost for keys if it exists. This is done
  so that for '=' ranges, 'ref' is prefered over 'range'.
- scan_time() now takes avg_io_costs() into account
- get_delayed_table_estimates() uses block_size and avg_io_cost()
- Removed default argument to test_if_order_by_key(); simplifies code
2020-03-27 03:58:32 +02:00
68ed3a81f2 MDEV-20854: ANALYZE for statements: not clear where the time is spent
Count the "gap" time between table accesses and display it as
r_other_time_ms in the "table" element.

* The advantage of this approach is that it doesn't add any new
  my_timer_cycles() calls.
* The disadvantage is that the definition of what is done during
  "other time" is not that clear: it includes checking the WHERE
  (for this table), constructing index lookup tuple (for the next table)
  writing to GROUP BY temporary table (as we dont account for that time
  separately [yet], etc)
2019-11-12 14:40:00 +03:00
d6db6df995 MDEV-17903: New optimizer defaults: change optimize_join_buffer_size to be ON
optimize_join_buffer_size is switched ON.
2019-02-19 14:27:24 +05:30
37deed3f37 Merge branch '10.4' into bb-10.4-mdev16188 2019-02-03 18:41:18 -08:00
658128af43 MDEV-16188 Use in-memory PK filters built from range index scans
This patch contains a full implementation of the optimization
that allows to use in-memory rowid / primary filters built for range  
conditions over indexes. In many cases usage of such filters reduce  
the number of disk seeks spent for fetching table rows.

In this implementation the choice of what possible filter to be applied  
(if any) is made purely on cost-based considerations.

This implementation re-achitectured the partial implementation of
the feature pushed by Galina Shalygina in the commit
8d5a11122c.

Besides this patch contains a better implementation of the generic  
handler function handler::multi_range_read_info_const() that
takes into account gaps between ranges when calculating the cost of
range index scans. It also contains some corrections of the
implementation of the handler function records_in_range() for MyISAM.

This patch supports the feature for InnoDB and MyISAM.
2019-02-03 14:56:12 -08:00
93c360e3a5 MDEV-15253: Default optimizer setting changes for MariaDB 10.4
use_stat_tables= PREFERABLY
optimizer_use_condition_selectivity= 4
2018-12-09 09:22:00 +05:30
a7abddeffa Create 'main' test directory and move 't' and 'r' there 2018-03-29 13:59:44 +03:00