Fixed some possible fatal wrong arguments to printf() style functions
Initialized some not initialized variables
Fixed bug in stored procedure and continue handlers
(Fixes Bug#22150)
This is a performance issue for queries with subqueries evaluation
of which requires filesort.
Allocation of memory for the sort buffer at each evaluation of a
subquery may take a significant amount of time if the buffer is rather big.
With the fix we allocate the buffer at the first evaluation of the
subquery and reuse it at each subsequent evaluation.
Evaluate "NULL IN (SELECT ...)" in a special way: Disable pushed-down
conditions and their "consequences":
= Do full table scans instead of unique_[index_subquery] lookups.
= Change appropriate "ref_or_null" accesses to full table scans in
subquery's joins.
Also cache value of NULL IN (SELECT ...) if the SELECT is not correlated
wrt any upper select.
- As a sideeffect of the patch to generate lex_hash.h only once
on the machine where the source dist was produced, a problem
was found when compiling a mysqld without partition support - it
would crash when looking up the lex symbols due to mismatch between
lex.h and the generated lex_hash.h
- Remove the ifdef for partition in lex.h
- Fix minor problem with"EXPLAIN PARTITION" when not compiled with
partition(existed also without the above patch)
- Add test case that will be run when we don't have partition
support compiled into mysqld
- Return error ER_FEATURE_DISABLED if user tries to use PARTITION
when there is no support for it.
We miss some records sometimes using RANGE method if we have
partial key segments.
Example:
Create table t1(a char(2), key(a(1)));
insert into t1 values ('a'), ('xx');
select a from t1 where a > 'x';
We call index_read() passing 'x' key and HA_READ_AFTER_KEY flag
in the handler::read_range_first() wich is wrong because we have
a partial key segment for the field and might miss records like 'xx'.
Fix: don't use open segments in such a case.
list using a function
When executing dependent subqueries they are re-inited and re-exec() for
each row of the outer context.
The cause for the bug is that during subquery reinitialization/re-execution,
the optimizer reallocates JOIN::join_tab, JOIN::table in make_simple_join()
and the local variable in 'sortorder' in create_sort_index(), which is
allocated by make_unireg_sortorder().
Care must be taken not to allocate anything into the thread's memory pool
while re-initializing query plan structures between subquery re-executions.
All such items mush be cached and reused because the thread's memory pool
is freed at the end of the whole query.
Note that they must be cached and reused even for queries that are not
otherwise cacheable because otherwise it will grow the thread's memory
pool every time a cacheable query is re-executed.
We provide additional members to the JOIN structure to store references
to the items that need to be cached.
account predicates that become sargable after reading const tables.
In some cases this resulted in choosing non-optimal execution plans.
Now info of such potentially saragable predicates is saved in
an array and after reading const tables we check whether this
predicates has become saragable.
Examined rows are counted for every join part. The per-join-part
counter was incremented over all iterations. The result variable
was replaced at the end of every iteration. The final result was
the number of examined rows by the join part that ended its
execution as the last one. The numbers of other join parts was
lost.
Now we reset the per-join-part counter before every iteration and
add it to the result variable at the end of the iteration. That
way we get the sum of all iterations of all join parts.
No test case. Testing this needs a look into the slow query log.
I don't know of a way to do this portably with the test suite.
Currently SQL_BIG_RESULT is checked only at compile time.
However, additional optimizations may take place after
this check that change the sort method from 'filesort'
to sorting via index. As a result the actual plan
executed is not the one specified by the SQL_BIG_RESULT
hint. Similarly, there is no such test when executing
EXPLAIN, resulting in incorrect output.
The patch corrects the problem by testing for
SQL_BIG_RESULT both during the explain and execution
phases.
Note: bug#21726 does not directly apply to 4.1, as it doesn't have stored
procedures. However, 4.1 had some bugs that were fixed in 5.0 by the
patch for bug#21726, and this patch is a backport of those fixes.
Namely, in 4.1 it fixes:
- LAST_INSERT_ID(expr) didn't return value of expr (4.1 specific).
- LAST_INSERT_ID() could return the value generated by current
statement if the call happens after the generation, like in
CREATE TABLE t1 (i INT AUTO_INCREMENT PRIMARY KEY, j INT);
INSERT INTO t1 VALUES (NULL, 0), (NULL, LAST_INSERT_ID());
- Redundant binary log LAST_INSERT_ID_EVENTs could be generated.
invocations of LAST_INSERT_ID.
Reding of LAST_INSERT_ID inside stored function wasn't noted by caller,
and no LAST_INSERT_ID_EVENT was issued for binary log.
The solution is to add THD::last_insert_id_used_bin_log, which is much
like THD::last_insert_id_used, but is reset only for upper-level
statements. This new variable is used to issue LAST_INSERT_ID_EVENT.
Non-upper-level INSERTs (the ones in the body of stored procedure,
stored function, or trigger) into a table that have AUTO_INCREMENT
column didn't affected the result of LAST_INSERT_ID() on this level.
The problem was introduced with the fix of bug 6880, which in turn was
introduced with the fix of bug 3117, where current insert_id value was
remembered on the first call to LAST_INSERT_ID() (bug 3117) and was
returned from that function until it was reset before the next
_upper-level_ statement (bug 6880).
The fix for bug#21726 brings back the behaviour of version 4.0, and
implements the following: remember insert_id value at the beginning
of the statement or expression (which at that point equals to
the first insert_id value generated by the previous statement), and
return that remembered value from LAST_INSERT_ID() or @@LAST_INSERT_ID.
Thus, the value returned by LAST_INSERT_ID() is not affected by values
generated by current statement, nor by LAST_INSERT_ID(expr) calls in
this statement.
Version 5.1 does not have this bug (it was fixed by WL 3146).
Fix for bug 7894 replaces a field(s) in a non-aggregate function with a item
reference if such a field was specified in the GROUP BY clause in order to
get a correct result.
When ROLLUP is involved this lead to a wrong result due to value of a such
field is got through a copy function and copying happens after the function
evaluation.
Such replacement isn't needed if grouping is also done by such a function.
The change_group_ref() function now isn't called for a function present in
the group list.