innodb.doublewrite: Skip the test case if we get an unexpected
checkpoint. This could happen because page cleaner thread
could be active after reading the initial checkpoint information.
When the first attempt of XA ROLLBACK is expected to fail,
some recovered changes could be written back through the doublewrite
buffer. Should that happen, the next recovery attempt (after mangling
the data file t1.ibd further) could fail because no copy of the
affected pages would be available in the doublewrite buffer.
To prevent this from happening, ensure that the doublewrite buffer
will not be used and no log checkpoint occurs during the previous
failed recovery attempt.
Also, let a successful XA ROLLBACK serve the additional purpose of
freeing a BLOB page and therefore rewriting page 0, which we must then
be able to recover despite induced corruption. In the last restart step,
we will tolerate an unexpected checkpoint, because one is frequently
occurring on FreeBSD and AIX, despite our efforts to force a buffer pool
flush before each "no checkpoint" section.
The invariant of write-ahead logging is that before any change to a
page is written to the data file, the corresponding log record must
must first have been durably written.
On crash recovery, there were some sloppy checks for this. Let us
implement accurate checks and flag an inconsistency as a hard error,
so that we can avoid further corruption of a corrupted database.
For data extraction from the corrupted database, innodb_force_recovery
can be used.
Before recovery is reading any data pages or invoking
buf_dblwr_t::recover() to recover torn pages from the
doublewrite buffer, InnoDB will have parsed the log until the
final LSN and updated log_sys.lsn to that. So, we can rely on
log_sys.lsn at all times. The doublewrite buffer recovery has been
refactored in such a way that the recv_sys.dblwr.pages may be consulted
while discovering files and their page sizes, but nothing will be
written back to data files before buf_dblwr_t::recover() is invoked.
A section of the test mariabackup.innodb_redo_overwrite
that is parsing some mariadb-backup --backup output has
been removed, because that output "redo log block is overwritten"
would often be missing in a Microsoft Windows environment
as a result of these changes.
recv_max_page_lsn, recv_lsn_checks_on: Remove.
recv_sys_t::validate_checkpoint(): Validate the write-ahead-logging
condition at the end of the recovery.
recv_dblwr_t::validate_page(): Keep track of the maximum LSN
(if we are checking a non-doublewrite copy of a page) but
do not complain LSN being in the future. The doublewrite buffer
is a special case, because it will be read early during recovery.
Besides, starting with commit 762bcb81b5
the dblwr=true copies of pages may legitimately be "too new".
recv_dblwr_t::find_page(): Find a valid page with the smallest
FIL_PAGE_LSN that is in the valid range for recovery.
recv_dblwr_t::restore_first_page(): Replaced by find_page().
Only buf_dblwr_t::recover() will write to data files.
buf_dblwr_t::recover(): Simplify the message output. Do attempt
doublewrite recovery on user page read error. Ignore doublewrite
pages whose FIL_PAGE_LSN is outside the usable bounds. Previously,
we could wrongly recover a too new page from the doublewrite buffer.
It is unlikely that this could have lead to an actual error.
Write back all recovered pages from the doublewrite buffer here,
including for the first page of any tablespace.
buf_page_is_corrupted(): Distinguish the return values
CORRUPTED_FUTURE_LSN and CORRUPTED_OTHER.
buf_page_check_corrupt(): Return the error code DB_CORRUPTION
in case the LSN is in the future.
Datafile::read_first_page(): Handle FSP_SPACE_FLAGS=0xffffffff
in the same way on both 32-bit and 64-bit architectures.
Datafile::read_first_page_flags(): Split from read_first_page().
Take a copy of the first page as a parameter.
recv_sys_t::free_corrupted_page(): Take the file as a parameter
and return whether a message was displayed. This avoids some duplicated
and incomplete error messages.
buf_page_t::read_complete(): Remove some redundant output and always
display the name of the corrupted file. Never return DB_FAIL;
use it only in internal error handling.
IORequest::read_complete(): Assume that buf_page_t::read_complete()
will have reported any error.
fil_space_t::set_corrupted(): Return whether this is the first time
the tablespace had been flagged as corrupted.
Datafile::validate_first_page(), fil_node_open_file_low(),
fil_node_open_file(), fil_space_t::read_page0(),
fil_node_t::read_page0(): Add a parameter for a copy of the
first page, and a parameter to indicate whether the FIL_PAGE_LSN
check should be suppressed. Before buf_dblwr_t::recover() is
invoked, we cannot validate the FIL_PAGE_LSN, but we can trust the
FSP_SPACE_FLAGS and the tablespace ID that may be present in a
potentially too new copy of a page.
Reviewed by: Debarun Banerjee
recv_dblwr_t::find_first_page(): Free the allocated memory
to read the first 3 pages from tablespace.
innodb.doublewrite: Added sleep to ensure page cleaner thread
wake up from my_cond_wait
- InnoDB fails to find the space id from the page0 of
the tablespace. In that case, InnoDB can use
doublewrite buffer to recover the page0 and write
into the file.
- buf_dblwr_t::init_or_load_pages(): Loads only the pages
which are valid.(page lsn >= checkpoint). To do that,
InnoDB has to open the redo log before system
tablespace, read the latest checkpoint information.
recv_dblwr_t::find_first_page():
1) Iterate the doublewrite buffer pages and find the 0th page
2) Read the tablespace flags, space id from the 0th page.
3) Read the 1st, 2nd and 3rd page from tablespace file and
compare the space id with the space id which is stored
in doublewrite buffer.
4) If it matches then we can write into the file.
5) Return space which matches the pages from the file.
SysTablespace::read_lsn_and_check_flags(): Remove the
retry logic for validating the first page. After
restoring the first page from doublewrite buffer,
assign tablespace flags by reading the first page.
recv_recovery_read_max_checkpoint(): Reads the maximum
checkpoint information from log file
recv_recovery_from_checkpoint_start(): Avoid reading
the checkpoint header information from log file
Datafile::validate_first_page(): Throw error in case
of first page validation fails.
- Split the doublewrite test into two test (doublewrite,
doublewrite_debug) to reduce the execution time of the test
- Removed big_test tag for the newly added test case
- Made doublewrite test as non-debug test
- Added search pattern to make sure that InnoDB uses doublewrite buffer
- Replaced all kill_mysqld.inc with shutdown_mysqld.inc and
zero shutdown timeout
- Removed the case where fsp_flags got corrupted. Because from commit
3da5d047b8 (MDEV-31851) onwards,
doublewrite buffer removes the conversion the fsp flags from buggy
10.1 format
Thanks to Marko Mäkelä for providing the non-debug test
The test innodb.doublewrite could occasionally fail with 64KiB page size
because the page 0 would no longer be in the doublewrite buffer.
Let us stop purge before the server is killed, and ensure that
the entire buffer pool will be flushed before we initiate an extra
write of page 0.
Now there can be only one log file instead of several which
logically work as a single file.
Possible names of redo log files: ib_logfile0,
ib_logfile101 (for just created one)
innodb_log_fiels_in_group: value of this variable is not used
by InnoDB. Possible values are still 1..100, to not break upgrade
LOG_FILE_NAME: add constant of value "ib_logfile0"
LOG_FILE_NAME_PREFIX: add constant of value "ib_logfile"
get_log_file_path(): convenience function that returns full
path of a redo log file
SRV_N_LOG_FILES_MAX: removed
srv_n_log_files: we can't remove this for compatibility reasons,
but now server doesn't use this variable
log_sys_t::file::fd: now just one, not std::vector
log_sys_t::log_capacity: removed word 'group'
find_and_check_log_file(): part of logic from huge srv_start()
moved here
recv_sys_t::files: file descriptors of redo log files.
There can be several of those in case we're upgrading
from older MariaDB version.
recv_sys_t::remove_extra_log_files: whether to remove
ib_logfile{1,2,3...} after successfull upgrade.
recv_sys_t::read(): open if needed and read from one
of several log files
recv_sys_t::files_size(): open if needed and return files count
redo_file_sizes_are_correct(): check that redo log files
sizes are equal. Just to log an error for a user.
Corresponding check was moved from srv0start.cc
namespace deprecated: put all deprecated variables here to
prevent usage of it by us, developers
The function fsp_header_get_space_id() returns ulint instead of
uint32_t, only to be able to complain that the two adjacent
tablespace ID fields in the page differ. Remove the function,
and merge the check to the callers.
Also, make some more use of aligned_malloc().
Historically, InnoDB split the redo log into at least 2 files.
MDEV-12061 allowed the minimum to be innodb_log_files_in_group=1,
but it kept the default at innodb_log_files_in_group=2.
Because performance seems to be slightly better with only one log file,
and because implementing an append-only variant of the log would require
a single file, let us define the default to be 1, and have
innodb_log_file_size=96M, to retain the same default total size.
The MDEV-17262 commit 26432e49d3
was skipped. In Galera 4, the implementation would seem to require
changes to the streaming replication.
In the tests archive.rnd_pos main.profiling, disable_ps_protocol
for SHOW STATUS and SHOW PROFILE commands until MDEV-18974
has been fixed.
On startup, if the InnoDB doublewrite buffer can be used to
recover a corrupted page, raising an ERROR about a recoverable
error seems inappropriate. Issue Note instead, and adjust
tests accordingly.
Also, correctly validate the tablespace ID in the files.
MariaDB data-at-rest encryption (innodb_encrypt_tables)
had repurposed the same unused data field that was repurposed
in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN)
field of SPATIAL INDEX. Because of this, MariaDB was unable to
support encryption on SPATIAL INDEX pages.
Furthermore, InnoDB page checksums skipped some bytes, and there
are multiple variations and checksum algorithms. By default,
InnoDB accepts all variations of all algorithms that ever existed.
This unnecessarily weakens the page checksums.
We hereby introduce two more innodb_checksum_algorithm variants
(full_crc32, strict_full_crc32) that are special in a way:
When either setting is active, newly created data files will
carry a flag (fil_space_t::full_crc32()) that indicates that
all pages of the file will use a full CRC-32C checksum over the
entire page contents (excluding the bytes where the checksum
is stored, at the very end of the page). Such files will always
use that checksum, no matter what the parameter
innodb_checksum_algorithm is assigned to.
For old files, the old checksum algorithms will continue to be
used. The value strict_full_crc32 will be equivalent to strict_crc32
and the value full_crc32 will be equivalent to crc32.
ROW_FORMAT=COMPRESSED tables will only use the old format.
These tables do not support new features, such as larger
innodb_page_size or instant ADD/DROP COLUMN. They may be
deprecated in the future. We do not want an unnecessary
file format change for them.
The new full_crc32() format also cleans up the MariaDB tablespace
flags. We will reserve flags to store the page_compressed
compression algorithm, and to store the compressed payload length,
so that checksum can be computed over the compressed (and
possibly encrypted) stream and can be validated without
decrypting or decompressing the page.
In the full_crc32 format, there no longer are separate before-encryption
and after-encryption checksums for pages. The single checksum is
computed on the page contents that is written to the file.
We do not make the new algorithm the default for two reasons.
First, MariaDB 10.4.2 was a beta release, and the default values
of parameters should not change after beta. Second, we did not
yet implement the full_crc32 format for page_compressed pages.
This will be fixed in MDEV-18644.
This is joint work with Marko Mäkelä.
In tests that directly write InnoDB data file pages,
compute the innodb_checksum_algorithm=crc32 checksums,
instead of writing the 0xdeadbeef value used by
innodb_checksum_algorithm=none. In this way, these tests
will not cause failures when executing
./mtr --mysqld=--loose-innodb-checksum-algorithm=strict_crc32
The doublewrite buffer pages must fit in the first InnoDB system
tablespace data file. The checks that were added in the initial patch
(commit 112b21da37)
were at too high level and did not cover all cases.
innodb.log_data_file_size: Test all innodb_page_size combinations.
fsp_header_init(): Never return an error. Move the change buffer creation
to the only caller that needs to do it.
btr_create(): Clean up the logic. Remove the error log messages.
buf_dblwr_create(): Try to return an error on non-fatal failure.
Check that the first data file is big enough for creating the
doublewrite buffers.
buf_dblwr_process(): Check if the doublewrite buffer is available.
Display the message only if it is available.
recv_recovery_from_checkpoint_start_func(): Remove a redundant message
about FIL_PAGE_FILE_FLUSH_LSN mismatch when crash recovery has already
been initiated.
fil_report_invalid_page_access(): Simplify the message.
fseg_create_general(): Do not emit messages to the error log.
innobase_init(): Revert the changes.
trx_rseg_create(): Refactor (no functional change).
As noted in MDEV-8841, any test that kills the server must issue
FLUSH TABLES, so that tables of crash-unsafe storage engines will
not be corrupted. Consistently issue this statement after any
call mtr.add_suppression() calls.
Also, do not invoke shutdown_server directly, but use helpers instead.
Most notably, this includes MDEV-11623, which includes a fix and
an upgrade procedure for the InnoDB file format incompatibility
that is present in MariaDB Server 10.1.0 through 10.1.20.
In other words, this merge should address
MDEV-11202 InnoDB 10.1 -> 10.2 migration does not work
innodb.doublewrite: Similar to what was done to innodb.101_compatibility,
add an explicit $_ parameter to the Perl unpack function.
Also, fix some diagnostic messages in the Perl code.
innodb.innodb-wl5522-debug: Adjust for the changed error codes and
messages on fault injection.
MariaDB 10.0/MySQL 5.6 using innodb-page-size!=16K
The storage format of FSP_SPACE_FLAGS was accidentally broken
already in MariaDB 10.1.0. This fix is bringing the format in
line with other MySQL and MariaDB release series.
Please refer to the comments that were added to fsp0fsp.h
for details.
This is an INCOMPATIBLE CHANGE that affects users of
page_compression and non-default innodb_page_size. Upgrading
to this release will correct the flags in the data files.
If you want to downgrade to earlier MariaDB 10.1.x, please refer
to the test innodb.101_compatibility how to reset the
FSP_SPACE_FLAGS in the files.
NOTE: MariaDB 10.1.0 to 10.1.20 can misinterpret
uncompressed data files with innodb_page_size=4k or 64k as
compressed innodb_page_size=16k files, and then probably fail
when trying to access the pages. See the comments in the
function fsp_flags_convert_from_101() for detailed analysis.
Move PAGE_COMPRESSION to FSP_SPACE_FLAGS bit position 16.
In this way, compressed innodb_page_size=16k tablespaces will not
be mistaken for uncompressed ones by MariaDB 10.1.0 to 10.1.20.
Derive PAGE_COMPRESSION_LEVEL, ATOMIC_WRITES and DATA_DIR from the
dict_table_t::flags when the table is available, in
fil_space_for_table_exists_in_mem() or fil_open_single_table_tablespace().
During crash recovery, fil_load_single_table_tablespace() will use
innodb_compression_level for the PAGE_COMPRESSION_LEVEL.
FSP_FLAGS_MEM_MASK: A bitmap of the memory-only fil_space_t::flags
that are not to be written to FSP_SPACE_FLAGS. Currently, these will
include PAGE_COMPRESSION_LEVEL, ATOMIC_WRITES and DATA_DIR.
Introduce the macro FSP_FLAGS_PAGE_SSIZE(). We only support
one innodb_page_size for the whole instance.
When creating a dummy tablespace for the redo log, use
fil_space_t::flags=0. The flags are never written to the redo log files.
Remove many FSP_FLAGS_SET_ macros.
dict_tf_verify_flags(): Remove. This is basically only duplicating
the logic of dict_tf_to_fsp_flags(), used in a debug assertion.
fil_space_t::mark: Remove. This flag was not used for anything.
fil_space_for_table_exists_in_mem(): Remove the unnecessary parameter
mark_space, and add a parameter for table flags. Check that
fil_space_t::flags match the table flags, and adjust the (memory-only)
flags based on the table flags.
fil_node_open_file(): Remove some redundant or unreachable conditions,
do not use stderr for output, and avoid unnecessary server aborts.
fil_user_tablespace_restore_page(): Convert the flags, so that the
correct page_size will be used when restoring a page from the
doublewrite buffer.
fil_space_get_page_compressed(), fsp_flags_is_page_compressed(): Remove.
It suffices to have fil_space_is_page_compressed().
FSP_FLAGS_WIDTH_DATA_DIR, FSP_FLAGS_WIDTH_PAGE_COMPRESSION_LEVEL,
FSP_FLAGS_WIDTH_ATOMIC_WRITES: Remove, because these flags do not
exist in the FSP_SPACE_FLAGS but only in memory.
fsp_flags_try_adjust(): New function, to adjust the FSP_SPACE_FLAGS
in page 0. Called by fil_open_single_table_tablespace(),
fil_space_for_table_exists_in_mem(), innobase_start_or_create_for_mysql()
except if --innodb-read-only is active.
fsp_flags_is_valid(ulint): Reimplement from the scratch, with
accurate comments. Do not display any details of detected
inconsistencies, because the output could be confusing when
dealing with MariaDB 10.1.x data files.
fsp_flags_convert_from_101(ulint): Convert flags from buggy
MariaDB 10.1.x format, or return ULINT_UNDEFINED if the flags
cannot be in MariaDB 10.1.x format.
fsp_flags_match(): Check the flags when probing files.
Implemented based on fsp_flags_is_valid()
and fsp_flags_convert_from_101().
dict_check_tablespaces_and_store_max_id(): Do not access the
page after committing the mini-transaction.
IMPORT TABLESPACE fixes:
AbstractCallback::init(): Convert the flags.
FetchIndexRootPages::operator(): Check that the tablespace flags match the
table flags. Do not attempt to convert tablespace flags to table flags,
because the conversion would necessarily be lossy.
PageConverter::update_header(): Write back the correct flags.
This takes care of the flags in IMPORT TABLESPACE.