Remove one of the major sources of race condiitons in mariadb-test.
Normally, mariadb_close() sends COM_QUIT to the server and immediately
disconnects. In mariadb-test it means the test can switch to another
connection and sends queries to the server before the server even
started parsing the COM_QUIT packet and these queries can see the
connection as fully active, as it didn't reach dispatch_command yet.
This is a major source of instability in tests and many - but not all,
still less than a half - tests employ workarounds. The correct one
is a pair count_sessions.inc/wait_until_count_sessions.inc.
Also very popular was wait_until_disconnected.inc, which was completely
useless, because it verifies that the connection is closed, and after
disconnect it always is, it didn't verify whether the server processed
COM_QUIT. Sadly the placebo was as widely used as the real thing.
Let's fix this by making mariadb-test `disconnect` command _to wait_ for
the server to confirm. This makes almost all workarounds redundant.
In some cases count_sessions.inc/wait_until_count_sessions.inc is still
needed, though, as only `disconnect` command is changed:
* after external tools, like `exec $MYSQL`
* after failed `connect` command
* replication, after `STOP SLAVE`
* Federated/CONNECT/SPIDER/etc after `DROP TABLE`
and also in some XA tests, because an XA transaction is dissociated from
the THD very late, after the server has closed the client connection.
Collateral cleanups: fix comments, remove some redundant statements:
* DROP IF EXISTS if nothing is known to exist
* DROP table/view before DROP DATABASE
* REVOKE privileges before DROP USER
etc
PROBLEM:
A deadlock was possible when a transaction tried to "upgrade" an already
held Record Lock to Next Key Lock.
SOLUTION:
This patch is based on observations that:
(1) a Next Key Lock is equivalent to Record Lock combined with Gap Lock
(2) a GAP Lock never has to wait for any other lock
In case we request a Next Key Lock, we check if we already own a Record
Lock of equal or stronger mode, and if so, then we change the requested
lock type to GAP Lock, which we either already have, or can be granted
immediately, as GAP locks don't conflict with any other lock types.
(We don't consider Insert Intention Locks a Gap Lock in above statements).
The reason of why we don't upgrage Record Lock to Next Key Lock is the
following.
Imagine a transaction which does something like this:
for each row {
request lock in LOCK_X|LOCK_REC_NOT_GAP mode
request lock in LOCK_S mode
}
If we upgraded lock from Record Lock to Next Key lock, there would be
created only two lock_t structs for each page, one for
LOCK_X|LOCK_REC_NOT_GAP mode and one for LOCK_S mode, and then used
their bitmaps to mark all records from the same page.
The situation would look like this:
request lock in LOCK_X|LOCK_REC_NOT_GAP mode on row 1:
// -> creates new lock_t for LOCK_X|LOCK_REC_NOT_GAP mode and sets bit for
// 1
request lock in LOCK_S mode on row 1:
// -> notices that we already have LOCK_X|LOCK_REC_NOT_GAP on the row 1,
// so it upgrades it to X
request lock in LOCK_X|LOCK_REC_NOT_GAP mode on row 2:
// -> creates a new lock_t for LOCK_X|LOCK_REC_NOT_GAP mode (because we
// don't have any after we've upgraded!) and sets bit for 2
request lock in LOCK_S mode on row 2:
// -> notices that we already have LOCK_X|LOCK_REC_NOT_GAP on the row 2,
// so it upgrades it to X
...etc...etc..
Each iteration of the loop creates a new lock_t struct, and in the end we
have a lot (one for each record!) of LOCK_X locks, each with single bit
set in the bitmap. Soon we run out of space for lock_t structs.
If we create LOCK_GAP instead of lock upgrading, the above scenario works
like the following:
// -> creates new lock_t for LOCK_X|LOCK_REC_NOT_GAP mode and sets bit for
// 1
request lock in LOCK_S mode on row 1:
// -> notices that we already have LOCK_X|LOCK_REC_NOT_GAP on the row 1,
// so it creates LOCK_S|LOCK_GAP only and sets bit for 1
request lock in LOCK_X|LOCK_REC_NOT_GAP mode on row 2:
// -> reuses the lock_t for LOCK_X|LOCK_REC_NOT_GAP by setting bit for 2
request lock in LOCK_S mode on row 2:
// -> notices that we already have LOCK_X|LOCK_REC_NOT_GAP on the row 2,
// so it reuses LOCK_S|LOCK_GAP setting bit for 2
In the end we have just two locks per page, one for each mode:
LOCK_X|LOCK_REC_NOT_GAP and LOCK_S|LOCK_GAP.
Another benefit of this solution is that it avoids not-entirely
const-correct, (and otherwise looking risky) "upgrading".
The fix was ported from
mysql/mysql-server@bfba840dfamysql/mysql-server@75cefdb1f7
Reviewed by: Marko Mäkelä