We deprecate and ignore the parameter innodb_buffer_pool_chunk_size
and let the buffer pool size to be changed in arbitrary 1-megabyte
increments.
innodb_buffer_pool_size_max: A new read-only startup parameter
that specifies the maximum innodb_buffer_pool_size. If 0 or
unspecified, it will default to the specified innodb_buffer_pool_size
rounded up to the allocation unit (2 MiB or 8 MiB). The maximum value
is 4GiB-2MiB on 32-bit systems and 16EiB-8MiB on 64-bit systems.
This maximum is very likely to be limited further by the operating system.
The status variable Innodb_buffer_pool_resize_status will reflect
the status of shrinking the buffer pool. When no shrinking is in
progress, the string will be empty.
Unlike before, the execution of SET GLOBAL innodb_buffer_pool_size
will block until the requested buffer pool size change has been
implemented, or the execution is interrupted by a KILL statement
a client disconnect, or server shutdown. If the
buf_flush_page_cleaner() thread notices that we are running out of
memory, the operation may fail with ER_WRONG_USAGE.
SET GLOBAL innodb_buffer_pool_size will be refused
if the server was started with --large-pages (even if
no HugeTLB pages were successfully allocated). This functionality
is somewhat exercised by the test main.large_pages, which now runs
also on Microsoft Windows. On Linux, explicit HugeTLB mappings are
apparently excluded from the reported Redident Set Size (RSS), and
apparently unshrinkable between mmap(2) and munmap(2).
The buffer pool will be mapped to a contiguous virtual memory area
that will be aligned and partitioned into extents of 8 MiB on
64-bit systems and 2 MiB on 32-bit systems.
Within an extent, the first few innodb_page_size blocks contain
buf_block_t objects that will cover the page frames in the rest
of the extent. The number of such frames is precomputed in the
array first_page_in_extent[] for each innodb_page_size.
In this way, there is a trivial mapping between
page frames and block descriptors and we do not need any
lookup tables like buf_pool.zip_hash or buf_pool_t::chunk_t::map.
We will always allocate the same number of block descriptors for
an extent, even if we do not need all the buf_block_t in the last
extent in case the innodb_buffer_pool_size is not an integer multiple
of the of extents size.
The minimum innodb_buffer_pool_size is 256*5/4 pages. At the default
innodb_page_size=16k this corresponds to 5 MiB. However, now that the
innodb_buffer_pool_size includes the memory allocated for the block
descriptors, the minimum would be innodb_buffer_pool_size=6m.
my_large_virtual_alloc(): A new function, similar to my_large_malloc().
my_virtual_mem_reserve(), my_virtual_mem_commit(),
my_virtual_mem_decommit(), my_virtual_mem_release():
New interface mostly by Vladislav Vaintroub, to separately
reserve and release virtual address space, as well as to
commit and decommit memory within it.
After my_virtual_mem_decommit(), the virtual memory range will be
read-only or unaccessible, depending on whether the build option
cmake -DHAVE_UNACCESSIBLE_AFTER_MEM_DECOMMIT=1
has been specified. This option is hard-coded on Microsoft Windows,
where VirtualMemory(MEM_DECOMMIT) will make the memory unaccessible.
On IBM AIX, Linux, Illumos and possibly Apple macOS, the virtual memory
will be zeroed out immediately. On other POSIX-like systems,
madvise(MADV_FREE) will be used if available, to give the operating
system kernel a permission to zero out the virtual memory range.
We prefer immediate freeing so that the reported
resident set size (RSS) of the process will reflect the current
innodb_buffer_pool_size. Shrinking the buffer pool is a rarely
executed resource intensive operation, and the immediate configuration
of the MMU mappings should not incur significant additional penalty.
opt_super_large_pages: Declare only on Solaris. Actually, this is
specific to the SPARC implementation of Solaris, but because we
lack access to a Solaris development environment, we will not revise
this for other MMU and ISA.
buf_pool_t::chunk_t::create(): Remove.
buf_pool_t::create(): Initialize all n_blocks of the buf_pool.free list.
buf_pool_t::allocate(): Renamed from buf_LRU_get_free_only().
buf_pool_t::LRU_warned: Changed to Atomic_relaxed<bool>,
only to be modified by the buf_flush_page_cleaner() thread.
buf_pool_t::shrink(): Attempt to shrink the buffer pool.
There are 3 possible outcomes: SHRINK_DONE (success),
SHRINK_IN_PROGRESS (the caller may keep trying),
and SHRINK_ABORT (we seem to be running out of buffer pool).
While traversing buf_pool.LRU, release the contended
buf_pool.mutex once in every 32 iterations in order to
reduce starvation. Use lru_scan_itr for efficient traversal,
similar to buf_LRU_free_from_common_LRU_list().
buf_pool_t::shrunk(): Update the reduced size of the buffer pool
in a way that is compatible with buf_pool_t::page_guess(),
and invoke my_virtual_mem_decommit().
buf_pool_t::resize(): Before invoking shrink(), run one batch of
buf_flush_page_cleaner() in order to prevent LRU_warn().
Abort if shrink() recommends it, or no blocks were withdrawn in
the past 15 seconds, or the execution of the statement
SET GLOBAL innodb_buffer_pool_size was interrupted.
buf_pool_t::first_to_withdraw: The first block descriptor that is
out of the bounds of the shrunk buffer pool.
buf_pool_t::withdrawn: The list of withdrawn blocks.
If buf_pool_t::resize() is aborted before shrink() completes,
we must be able to resurrect the withdrawn blocks in the free list.
buf_pool_t::contains_zip(): Added a parameter for the
number of least significant pointer bits to disregard,
so that we can find any pointers to within a block
that is supposed to be free.
buf_pool_t::is_shrinking(): Return the total number or blocks that
were withdrawn or are to be withdrawn.
buf_pool_t::to_withdraw(): Return the number of blocks that will need to
be withdrawn.
buf_pool_t::usable_size(): Number of usable pages, considering possible
in-progress attempt at shrinking the buffer pool.
buf_pool_t::page_guess(): Try to buffer-fix a guessed block pointer.
If HAVE_UNACCESSIBLE_AFTER_MEM_DECOMMIT is set, the pointer will
be validated before being dereferenced.
buf_pool_t::get_info(): Replaces buf_stats_get_pool_info().
innodb_init_param(): Refactored. We must first compute
srv_page_size_shift and then determine the valid bounds of
innodb_buffer_pool_size.
buf_buddy_shrink(): Replaces buf_buddy_realloc().
Part of the work is deferred to buf_buddy_condense_free(),
which is being executed when we are not holding any
buf_pool.page_hash latch.
buf_buddy_condense_free(): Do not relocate blocks.
buf_buddy_free_low(): Do not care about buffer pool shrinking.
This will be handled by buf_buddy_shrink() and
buf_buddy_condense_free().
buf_buddy_alloc_zip(): Assert !buf_pool.contains_zip()
when we are allocating from the binary buddy system.
Previously we were asserting this on multiple recursion levels.
buf_buddy_block_free(), buf_buddy_free_low():
Assert !buf_pool.contains_zip().
buf_buddy_alloc_from(): Remove the redundant parameter j.
buf_flush_LRU_list_batch(): Add the parameter to_withdraw
to keep track of buf_pool.n_blocks_to_withdraw.
buf_do_LRU_batch(): Skip buf_free_from_unzip_LRU_list_batch()
if we are shrinking the buffer pool. In that case, we want
to minimize the page relocations and just finish as quickly
as possible.
trx_purge_attach_undo_recs(): Limit purge_sys.n_pages_handled()
in every iteration, in case the buffer pool is being shrunk
in the middle of a purge batch.
Reviewed by: Debarun Banerjee
* preserve the graph in memory between statements
* keep it in a TABLE_SHARE, available for concurrent searches
* nodes are generally read-only, walking the graph doesn't change them
* distance to target is cached, calculated only once
* SIMD-optimized bloom filter detects visited nodes
* nodes are stored in an array, not List, to better utilize bloom filter
* auto-adjusting heuristic to estimate the number of visited nodes
(to configure the bloom filter)
* many threads can concurrently walk the graph. MEM_ROOT and Hash_set
are protected with a mutex, but walking doesn't need them
* up to 8 threads can concurrently load nodes into the cache,
nodes are partitioned into 8 mutexes (8 is chosen arbitrarily, might
need tuning)
* concurrent editing is not supported though
* this is fine for MyISAM, TL_WRITE protects the TABLE_SHARE and the
graph (note that TL_WRITE_CONCURRENT_INSERT is not allowed, because an
INSERT into the main table means multiple UPDATEs in the graph)
* InnoDB uses secondary transaction-level caches linked in a list in
in thd->ha_data via a fake handlerton
* on rollback the secondary cache is discarded, on commit nodes
from the secondary cache are invalidated in the shared cache
while it is exclusively locked
* on savepoint rollback both caches are flushed. this can be improved
in the future with a row visibility callback
* graph size is controlled by @@mhnsw_cache_size, the cache is flushed
when it reaches the threshold
The problem was that when using clang + asan, we do not get a correct value
for the thread stack as some local variables are not allocated at the
normal stack.
It looks like that for example clang 18.1.3, when compiling with
-O2 -fsanitize=addressan it puts local variables and things allocated by
alloca() in other areas than on the stack.
The following code shows the issue
Thread 6 "mariadbd" hit Breakpoint 3, do_handle_one_connection
(connect=0x5080000027b8,
put_in_cache=<optimized out>) at sql/sql_connect.cc:1399
THD *thd;
1399 thd->thread_stack= (char*) &thd;
(gdb) p &thd
(THD **) 0x7fffedee7060
(gdb) p $sp
(void *) 0x7fffef4e7bc0
The address of thd is 24M away from the stack pointer
(gdb) info reg
...
rsp 0x7fffef4e7bc0 0x7fffef4e7bc0
...
r13 0x7fffedee7060 140737185214560
r13 is pointing to the address of the thd. Probably some kind of
"local stack" used by the sanitizer
I have verified this with gdb on a recursive call that calls alloca()
in a loop. In this case all objects was stored in a local heap,
not on the stack.
To solve this issue in a portable way, I have added two functions:
my_get_stack_pointer() returns the address of the current stack pointer.
The code is using asm instructions for intel 32/64 bit, powerpc,
arm 32/64 bit and sparc 32/64 bit.
Supported compilers are gcc, clang and MSVC.
For MSVC 64 bit we are using _AddressOfReturnAddress()
As a fallback for other compilers/arch we use the address of a local
variable.
my_get_stack_bounds() that will return the address of the base stack
and stack size using pthread_attr_getstack() or NtCurrentTed() with
fallback to using the address of a local variable and user provided
stack size.
Server changes are:
- Moving setting of thread_stack to THD::store_globals() using
my_get_stack_bounds().
- Removing setting of thd->thread_stack, except in functions that
allocates a lot on the stack before calling store_globals(). When
using estimates for stack start, we reduce stack_size with
MY_STACK_SAFE_MARGIN (8192) to take into account the stack used
before calling store_globals().
I also added a unittest, stack_allocation-t, to verify the new code.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
When using the default innodb_log_buffer_size=2m, mariadb-backup --backup
would spend a lot of time re-reading and re-parsing the log. For reads,
it would be beneficial to memory-map the entire ib_logfile0 to the
address space (typically 48 bits or 256 TiB) and read it from there,
both during --backup and --prepare.
We will introduce the Boolean read-only parameter innodb_log_file_mmap
that will be OFF by default on most platforms, to avoid aggressive
read-ahead of the entire ib_logfile0 in when only a tiny portion would be
accessed. On Linux and FreeBSD the default is innodb_log_file_mmap=ON,
because those platforms define a specific mmap(2) option for enabling
such read-ahead and therefore it can be assumed that the default would
be on-demand paging. This parameter will only have impact on the initial
InnoDB startup and recovery. Any writes to the log will use regular I/O,
except when the ib_logfile0 is stored in a specially configured file system
that is backed by persistent memory (Linux "mount -o dax").
We also experimented with allowing writes of the ib_logfile0 via a
memory mapping and decided against it. A fundamental problem would be
unnecessary read-before-write in case of a major page fault, that is,
when a new, not yet cached, virtual memory page in the circular
ib_logfile0 is being written to. There appears to be no way to tell
the operating system that we do not care about the previous contents of
the page, or that the page fault handler should just zero it out.
Many references to HAVE_PMEM have been replaced with references to
HAVE_INNODB_MMAP.
The predicate log_sys.is_pmem() has been replaced with
log_sys.is_mmap() && !log_sys.is_opened().
Memory-mapped regular files differ from MAP_SYNC (PMEM) mappings in the
way that an open file handle to ib_logfile0 will be retained. In both
code paths, log_sys.is_mmap() will hold. Holding a file handle open will
allow log_t::clear_mmap() to disable the interface with fewer operations.
It should be noted that ever since
commit 685d958e38b825ad9829be311f26729cccf37c46 (MDEV-14425)
most 64-bit Linux platforms on our CI platforms
(s390x a.k.a. IBM System Z being a notable exception) read and write
/dev/shm/*/ib_logfile0 via a memory mapping, pretending that it is
persistent memory (mount -o dax). So, the memory mapping based log
parsing that this change is enabling by default on Linux and FreeBSD
has already been extensively tested on Linux.
::log_mmap(): If a log cannot be opened as PMEM and the desired access
is read-only, try to open a read-only memory mapping.
xtrabackup_copy_mmap_snippet(), xtrabackup_copy_mmap_logfile():
Copy the InnoDB log in mariadb-backup --backup from a memory
mapped file.
Improve detection for DES support in OpenSSL, to allow compilation
against system OpenSSL without DES.
Note that MariaDB needs to be compiled against OpenSSL-like library
that itself has DES support which cmake detected. Positive detection
is indicated with CMake variable HAVE_des 1.
Signed-off-by: Dimitri John Ledkov <dimitri.ledkov@surgut.co.uk>
Apparently, invoking fcntl(fd, F_SETFL, O_DIRECT) will lead to
unexpected behaviour on Linux bcachefs and possibly other file systems,
depending on the operating system version. So, let us avoid doing that,
and instead just attempt to pass the O_DIRECT flag to open(). This should
make us compatible with NetBSD, IBM AIX, as well as Solaris and its
derivatives.
This fix does not change the fact that we had only implemented
innodb_log_file_buffering=OFF on systems where we can determine the
physical block size (typically 512 or 4096 bytes).
Currently, those operating systems are Linux and Microsoft Windows.
HAVE_FCNTL_DIRECT, os_file_set_nocache(): Remove.
OS_FILE_OVERWRITE, OS_FILE_CREATE_PATH: Remove (never used parameters).
os_file_log_buffered(), os_file_log_maybe_unbuffered(): Helper functions.
os_file_create_simple_func(): When applicable, initially attempt to
open files in O_DIRECT mode.
os_file_create_func(): When applicable, initially attempt to
open files in O_DIRECT mode.
For type==OS_LOG_FILE && create_mode != OS_FILE_CREATE
we will first invoke stat(2) on the file name to find out if the size
is compatible with O_DIRECT. If create_mode == OS_FILE_CREATE, we will
invoke fstat(2) on the created log file afterwards, and may close and
reopen the file in O_DIRECT mode if applicable.
create_temp_file(): Support O_DIRECT. This is only used if O_TMPFILE is
available and innodb_disable_sort_file_cache=ON (non-default value).
Notably, that setting never worked on Microsoft Windows.
row_merge_file_create_mode(): Split from row_merge_file_create_low().
Create a temporary file in the specified mode.
Reviewed by: Vladislav Vaintroub
The directio(3C) function on Solaris is supported on NFS and UFS
while the majority of users should be on ZFS, which is a copy-on-write
file system that implements transparent compression and therefore
cannot support unbuffered I/O.
Let us remove the call to directio() and simply treat
innodb_flush_method=O_DIRECT in the same way as the previous
default value innodb_flush_method=fsync on Solaris. Also, let us
remove some dead code around calls to os_file_set_nocache() on
platforms where fcntl(2) is not usable with O_DIRECT.
On IBM AIX, O_DIRECT is not documented for fcntl(2), only for open(2).
AIX compilation failed, because glibc's non-standard extension to
`struct tm` were used - additional members tm_gmtoff and tm_zone.
The patch fixes it by adding corresponding compile-time check.
Additionally, for the calculation of GMT offset on AIX, a portable
variant of timegm() was required.Implementation here is inspired by
SergeyD's answer on Stackoverflow :
https://stackoverflow.com/questions/16647819/timegm-cross-platform
Remove alarm() remnants
- Replace thread-unsafe use of alarm() inside my_lock.c with a
timed loop.
- Remove configure time checks
- Remove mysys my_alarm.c/my_alarm.h
This allows to simplify net_real_read() and net_real_write() a bit.
Removed some superfluous #ifdef/ifndef MYSQL_SERVER from net_serv.cc
The code always runs in server, either normal or embedded.
Dead code for switching socket between blocking and non-blocking modes,
is also removed.
Removed pthread_kill() with alarm signal that woke up main thread on
server shutdown. Used shutdown(2) on polling sockets instead, to the same
effect.
Removed yet another superstitious pthread_kill(), that ran on non-Windows
in terminate_slave_thread().
KDF(key_str, salt [, {info | iterations} [, kdf_name [, width ]]])
kdf_name is "hkdf" or "pbkdf2_hmac" (default).
width (in bits) can be any number divisible by 8,
by default it's taken from @@block_encryption_mode
iterations must be positive, and is 1000 by default
OpenSSL 1.0 doesn't support HKDF, so it'll return NULL.
This OpenSSL version is still used in SLES 12 and CentOS 7
This fixes up commit 77c184df7c056da7364e606ac977cc2d3cd826ad
which explicitly specifies that we use ISO/IEC 9899:1999 (C99),
which includes the snprintf() function.
Thanks to references from Brad Smith, BSDs use getmntinfo as
a system call for mounted filesystems.
Most BSDs return statfs structures, (and we use OSX's statfs64),
but NetBSD uses a statvfs structure.
Simplify Linux getmntent_r to just use getmntent.
AIX uses getmntent.
An attempt at writing Solaris compatibility with
a small bit of HPUX compatibility was made based on man page
entries only. Fixes welcome.
statvfs structures now use f_bsize for consistency with statfs
Test case adjusted as PATH_MAX is OS defined (e.g. 1023 on AIX)
Fixes: 0ee5cf837e3a0464acc20db2a2aee0adaff3f2ac
also fixes:
MDEV-27818: Disk plugin does not show zpool mounted devices
This is because zpool mounted point don't begin with /.
Due to the proliferation of multiple filesystem types since this
was written, we restrict the entries listed in the disks plugin
to excude:
* read only mount points (no point monitoring, and
includes squash, snaps, sysfs, procfs, cgroups...)
* mount points that aren't directories (excludes /etc/hostname and
similar mounts in containers). (getmntent (Linux/AIX) only)
* exclude systems where there is no capacity listed (excludes various
virtual filesystem types).
Reviewer: Sergei Golubchik
As pointed out with MDEV-29308 there are issues with the code as is.
MariaDB is built as C++11 / C99. aligned_alloc() is not guarenteed
to be exposed when building with any mode other than C++17 / C11.
The other *BSD's have their stdlib.h header to expose the function
with C+11 anyway, but the issue exists in the C99 code too, the
build just does not use -Werror. Linux globally defines _GNU_SOURCE
hiding the issue as well.