Attempt to execute EXPLAIN statement on multi-table DELETE statement
leads to firing firing of the assertion
DBUG_ASSERT(! is_set());
in the method Diagnostics_area::set_eof_status.
For example, above mentioned assertion failure happens
in case any of the following statements
EXPLAIN DELETE FROM t1.* USING t1
EXPLAIN DELETE b FROM t1 AS a JOIN t1 AS b
are executed in prepared statement mode provided the table t1
does exist.
This assertion is hit by the reason that a status of
Diagnostics_area is set twice. The first time it is set from
the function do_select() when the method multi_delete::send_eof()
called. The second time it is set when the method
Explain_query::send_explain() calls the method select_send::send_eof
(this method invokes the method Diagnostics_area::set_eof_status that
finally hits assertion)
The second invocation for a setter method of the class Diagnostics_area
is correct and run to send a response containing explain data.
But first invocation of a setter method of the class Diagnostics_area
is wrong since the function do_select() shouldn't be called at all
for handling of the EXPLAIN statement.
The reason by that the function do_select() is called during handling of
the EXPLAIN statement is that the flag SELECT_DESCRIBE not set in the
data member JOIN::select_options. The flag SELECT_DESCRIBE
if is copied from values select_lex->options.
During parsing of EXPLAIN statement this flag is set but latter reset
from the function reinit_stmt_before_use() that is called on
execution of prepared statement.
void reinit_stmt_before_use(THD *thd, LEX *lex)
{
...
for (; sl; sl= sl->next_select_in_list())
{
if (sl->changed_elements & TOUCHED_SEL_COND)
{
/* remove option which was put by mysql_explain_union() */
sl->options&= ~SELECT_DESCRIBE;
...
}
...
}
So, to fix the issue the flag SELECT_DESCRIBE is set forcibly at the
mysql_select() function in case thd->lex->describe set,
that is in case EXPLAIN being executed.
Fixes also:
MDEV-24942 Server crashes in _ma_rec_pack... with DEFAULT() on BLOB
This was caused by two different bugs, both related to that the default
value for the blob was not calculated before it was used:
- There where now Item_default_value::..result() wrappers, which is
needed as item in HAVING uses these. This causes crashes when
using a reference to a DEFAULT(blob_field) in HAVING. It also
caused wrong results when used with other fields with default value
expressions that are not constants.
- create_tmp_field() did not take into account that blob fields with
default expressions are not yet initialized. Fixed by treating
Item_default_value(blob) like a normal item expression.
The failure happened for group by queries when all tables where marked as
'const tables' (tables with 0-1 matching rows) and no row matched the
where clause and there was in addition a direct reference to a field.
In this case the field would not be properly reset and the query would
return 'random data' that happended to be in table->record[0].
Fixed by marking all const tables as null tables in this particular case.
Sergei also provided an extra test case for the code.
@reviewer Sergei Petrunia <psergey@askmonty.org>
When creating a summary temporary table with bit fields used in the sum
expression with several parameters, like GROUP_CONCAT(), the counting of
bits needed in the record was wrong.
The reason we got an assert in Aria was because the bug caused a memory
overwrite in the record and Aria noticed that the data was 'impossible.
For an IN/ANY/ALL subquery without an aggregate function and HAVING clause,
the GROUP BY clause is removed.
Due to the GROUP BY list being removed, the invalid reference in the GROUP BY
clause was never resolved.
Remove the GROUP BY list only when the all the items in the GROUP BY list
are resolved.
Also removing the GROUP BY list later would not affect the extension that allows
using non-aggregated field in an aggregate function (when ONLY_FULL_GROUP_BY
is not set) because the GROUP BY list is removed only when their is
NO aggregate function in IN/ALL/ANY subquery.
The assertion failed in handler::ha_reset upon SELECT under
READ UNCOMMITTED from table with index on virtual column.
This was the debug-only failure, though the problem is mush wider:
* MY_BITMAP is a structure containing my_bitmap_map, the latter is a raw
bitmap.
* read_set, write_set and vcol_set of TABLE are the pointers to MY_BITMAP
* The rest of MY_BITMAPs are stored in TABLE and TABLE_SHARE
* The pointers to the stored MY_BITMAPs, like orig_read_set etc, and
sometimes all_set and tmp_set, are assigned to the pointers.
* Sometimes tmp_use_all_columns is used to substitute the raw bitmap
directly with all_set.bitmap
* Sometimes even bitmaps are directly modified, like in
TABLE::update_virtual_field(): bitmap_clear_all(&tmp_set) is called.
The last three bullets in the list, when used together (which is mostly
always) make the program flow cumbersome and impossible to follow,
notwithstanding the errors they cause, like this MDEV-17556, where tmp_set
pointer was assigned to read_set, write_set and vcol_set, then its bitmap
was substituted with all_set.bitmap by dbug_tmp_use_all_columns() call,
and then bitmap_clear_all(&tmp_set) was applied to all this.
To untangle this knot, the rule should be applied:
* Never substitute bitmaps! This patch is about this.
orig_*, all_set bitmaps are never substituted already.
This patch changes the following function prototypes:
* tmp_use_all_columns, dbug_tmp_use_all_columns
to accept MY_BITMAP** and to return MY_BITMAP * instead of my_bitmap_map*
* tmp_restore_column_map, dbug_tmp_restore_column_maps to accept
MY_BITMAP* instead of my_bitmap_map*
These functions now will substitute read_set/write_set/vcol_set directly,
and won't touch underlying bitmaps.
I_S tables were materialized too late, an attempt to use table
statistics before the table was created caused a crash.
Let's move table creation up. it only needs read_set to
be calculated properly, this happens in JOIN::optimize_inner(),
after semijoin transformation.
Note that tables are not populated at that point, so most of the
statistics would make no sense anyway. But at least field sizes
will be correct. And it won't crash.
- Create_tmp_table::finalize didn't clear file after delete which
could cause a double free. This is however not a likely problem as
this code path is very unlikely to happen
- free_tmp_table() could do handler calls even if the table was never
opened. Fixed by adding a test if the table is opened.
The assertion failed in handler::ha_reset upon SELECT under
READ UNCOMMITTED from table with index on virtual column.
This was the debug-only failure, though the problem is mush wider:
* MY_BITMAP is a structure containing my_bitmap_map, the latter is a raw
bitmap.
* read_set, write_set and vcol_set of TABLE are the pointers to MY_BITMAP
* The rest of MY_BITMAPs are stored in TABLE and TABLE_SHARE
* The pointers to the stored MY_BITMAPs, like orig_read_set etc, and
sometimes all_set and tmp_set, are assigned to the pointers.
* Sometimes tmp_use_all_columns is used to substitute the raw bitmap
directly with all_set.bitmap
* Sometimes even bitmaps are directly modified, like in
TABLE::update_virtual_field(): bitmap_clear_all(&tmp_set) is called.
The last three bullets in the list, when used together (which is mostly
always) make the program flow cumbersome and impossible to follow,
notwithstanding the errors they cause, like this MDEV-17556, where tmp_set
pointer was assigned to read_set, write_set and vcol_set, then its bitmap
was substituted with all_set.bitmap by dbug_tmp_use_all_columns() call,
and then bitmap_clear_all(&tmp_set) was applied to all this.
To untangle this knot, the rule should be applied:
* Never substitute bitmaps! This patch is about this.
orig_*, all_set bitmaps are never substituted already.
This patch changes the following function prototypes:
* tmp_use_all_columns, dbug_tmp_use_all_columns
to accept MY_BITMAP** and to return MY_BITMAP * instead of my_bitmap_map*
* tmp_restore_column_map, dbug_tmp_restore_column_maps to accept
MY_BITMAP* instead of my_bitmap_map*
These functions now will substitute read_set/write_set/vcol_set directly,
and won't touch underlying bitmaps.
This bug could cause a crash when executing queries that used mutually
recursive CTEs with system variable big_tables set to 1. It happened due
to several bugs in the code that handled recursive table references
referred mutually recursive CTEs. For each recursive table reference a
temporary table is created that contains all rows generated for the
corresponding recursive CTE table on the previous step of recursion.
This temporary table should be created in the same way as the temporary
table created for a regular materialized derived table using the
method select_union::create_result_table(). In this case when the
temporary table is created it uses the select_union::TMP_TABLE_PARAM
structure as the parameter for the table construction. However the
code created the temporary table using just the function create_tmp_table()
and passed pointers to certain fields of the TMP_TABLE_PARAM structure
used for accumulation of rows of the recursive CTE table as parameters
for update. This was a mistake because now different temporary tables
cannot share some TMP_TABLE_PARAM fields in a general case. Besides,
depending on how mutually recursive CTE tables were defined and which
of them were referred in the executed query the select_union object
allocated for a recursive table reference could be allocated again after
the the temporary table had been created. In this case the TMP_TABLE_PARAM
object associated with the temporary table created for the recursive
table reference contained unassigned fields needed for execution when
Aria engine is employed as the engine for temporary tables.
This patch ensures that
- select_union object is created only once for any recursive table
reference
- any temporary table created for recursive CTEs uses its own
TMP_TABLE_PARAM structure
The patch also fixes a problem caused by incomplete cleanup of join tables
associated with recursive table references.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
A heuristic in best_access_path says that if for an index
ref access involved key parts which are greater than equal to that
for range access, then range access should not be considered.
The assumption made by this heuristic does not hold when
the range optimizer opted to use the group-by min-max optimization.
So the fix here would be to not consider the heuristic if
the range optimizer picked the usage of group-by min-max
optimization.
Due to a premature cleanup of the unit that specified a recursive CTE
used in the second operand of union the server fell into an infinite
loop in the reported test case. In other cases this premature cleanup
could cause other problems.
The bug is the result of a not quite correct fix for MDEV-17024. The
unit that specifies a recursive CTE has to be cleaned only after the
cleanup of the last external reference to this CTE. It means that
cleanups of the unit triggered not by the cleanup of a external
reference to the CTE must be blocked.
Usage of local table chains in selects to get external references to
recursive CTEs was not correct either because of possible merges of
some selects.
Also fixed a minor bug in st_select_lex::set_explain_type() that caused
typing 'RECURSIVE UNION' instead of 'UNION' in EXPLAIN output for external
references to a recursive CTE.
This follows up commit
commit 94a520ddbe and
commit 7c5519c12d.
After these changes, the default test suites on a
cmake -DWITH_UBSAN=ON build no longer fail due to passing
null pointers as parameters that are declared to never be null,
but plenty of other runtime errors remain.
Reimplement MDEV-14275 Improving memory utilization for information schema
Postpone temp table instantiation until after setup_fields().
Replace all unused (not marked in read_set) columns in an I_S table
with CHAR(0). This can drastically reduce the footprint of a MEMORY
table (a TABLE_CATALOG alone is 1538 bytes per row).
This does not change the engine. If the table was decided to be Aria
(because of, say, blobs) then after optimization it'll stay Aria
even if all blobs were removed.
Note 1: when transforming table structure, share->blob_fields is
preserved, otherwise Aria might switch from DYNAMIC to STATIC row format
and expect a special field for a deleted mark, which create_tmp_tabe
didn't provide.
Note 2: optimizer was doing handler::info() (to know the number of rows)
before the temp table is populated. That didn't make much sense. Now
it's done before the table is even instantiated. Preserve the old
behavior and report 0 rows.
This reverts e2664ee836 and a8458a2345