Due to complications while parsing of INSERT..SELECT statements,
optimizer hints placed at the INSERT part are ignored.
At the same time, hints placed at the SELECT part of
INSERT..SELECT statements are fully supported.
When processing queries like
INSERT INTO t1 (..) SELECT .. FROM t1, t2 ...,
there is a single query block (i.e., a single SELECT_LEX) for both INSERT and
SELECT parts. During hints resolution, when hints are attached to particular
TABLE_LIST's, the search is performed by table name across the whole
query block.
So, if a table mentioned in an optimizer hint is present in the INSERT part,
the hint is attached to the that table. This is obviously wrong as
optimizer hints are supposed to only affect the SELECT part of
an INSERT..SELECT clause.
This commit disables possible attaching hints to tables in the INSERT part
and fixes some other bugs related to INSERT..SELECT statements processing
Optimizer hints parser analyzes `thd->is_error()` flag to detect a fatal
error occured during hints processing. However, this criteria is not
reliable and considered a bad practice.
This commit replaces the criteria with the parser's own `is_fatal_error()`
flag which is related strictly to hints parsing and not something else
- Using Lex_ident_sys to scan identifiers, like the SQL parser does.
This fixes handling of double-quote-delimited and backtick-delimited identifiers,
as well as handling of non-ASCII identifiers.
Unescaping and converting from the client character set to the system
character set is now done using Lex_ident_cli_st and Lex_ident_sys,
like it's done in the SQL tokenizer/parser.
Adding helper methods to_ident_cli() and to_ident_sys()
in Optimizer_hint_parser::Token.
- Fixing the hint parser to report a syntax error when an empty identifiers:
SELECT /*+ BKA(``) */ * FROM t1;
- Moving a part of the code from opt_hints_parser.h to opt_hints_parser.cc
Moving these method definitions:
- Optimizer_hint_tokenizer::find_keyword()
- Optimizer_hint_tokenizer::get_token()
to avoid huge pieces of the code in the header file.
- A Lex_ident_cli_st cleanup
Fixing a few Lex_ident_cli_st methods to return Lex_ident_cli_st &
instead of void, to use them easier in the caller code.
- Fixing the hint parser to display the correct line number
Adding a new data type Lex_comment_st
(a combination of LEX_CSTRING and a line number)
Using it in sql_yacc.yy
- Getting rid of redundant dependencies on sql_hints_parser.h
Moving void LEX::resolve_optimizer_hints() from sql_lex.h to sql_lex.cc
Adding a class Optimizer_hint_parser_output, deriving from
Optimizer_hint_parser::Hint_list. Fixing the hint parser to
return a pointer to an allocated instance of Optimizer_hint_parser_output
rather than an instance of Optimizer_hint_parser::Hint_list.
This allows to use a forward declaration of Optimizer_hint_parser_output
in sql_lex.h and thus avoid dependencies on sql_hints_parser.h.
This commit introduces:
- the infrastructure for optimizer hints;
- hints for join buffering: BNL(), NO_BNL(), BKA(), NO_BKA();
- NO_ICP() hint for disabling index condition pushdown;
- MRR(), MO_MRR() hint for multi-range reads control;
- NO_RANGE_OPTIMIZATION() for disabling range optimization;
- QB_NAME() for assigning names for query blocks.
Get rid of need of matherialization for usual INSERT (cache results in
Item_cache* if needed)
- subqueries in VALUE do not see new records in the table we are
inserting to
- subqueries in RETIRNING prohibited to use the table we are inserting to
failed in find_field_in_table_ref
The main crash with segfault in find_field_in_tables() was fixed by
6aa47fae30 (MDEV-35276). This fix is for debug assertion.
Since Item_default_value is also Item_field there is nothing to be
done except adding DEFAULT_VALUE_ITEM type check.
Added capability to create a trigger associated with several trigger
events. For this goal, the syntax of the CREATE TRIGGER statement
was extended to support the syntax structure { event [ OR ... ] }
for the `trigger_event` clause. Since one trigger will be able to
handle several events it should be provided a way to determine what
kind of event is handled on execution of a trigger. For this goal
support of the clauses INSERTING, UPDATING , DELETING was added by
this patch. These clauses can be used inside a trigger body to detect
what kind of trigger action is currently processed using the following
boilerplate:
IF INSERTING THEN ...
ELSIF UPDATING THEN ...
ELSIF DELETING THEN ...
In case one of the clauses INSERTING, UPDATING, DELETING specified in
a trigger's body not matched with a trigger event type, the error
ER_INCOMPATIBLE_EVENT_FLAG is emitted.
After this patch be pushed, one Trigger object will be associated with
several trigger events. It means that the array
Table_triggers_list::triggers
can contain several pointers to the same Trigger object in array members
corresponding to different events. Moreover, support of several trigger
events for the same trigger requires that the data members `next` and
`action_order` of the Trigger class be converted to arrays to store
relating information per trigger event base.
Ability to specify the same trigger for different event types results in
necessity to handle invalid cases on execution of the multi-event
trigger, when the OLD or NEW qualifiers doesn't match a current event
type against that the trigger is run. The clause OLD should produces
the NULL value for INSERT event, whereas the clause NEW should produce
the NULL value for DELETE event.
This patch adds support for SYS_REFCURSOR (a weakly typed cursor)
for both sql_mode=ORACLE and sql_mode=DEFAULT.
Works as a regular stored routine variable, parameter and return value:
- can be passed as an IN parameter to stored functions and procedures
- can be passed as an INOUT and OUT parameter to stored procedures
- can be returned from a stored function
Note, strongly typed REF CURSOR will be added separately.
Note, to maintain dependencies easier, some parts of sql_class.h
and item.h were moved to new header files:
- select_results.h:
class select_result_sink
class select_result
class select_result_interceptor
- sp_cursor.h:
class sp_cursor_statistics
class sp_cursor
- sp_rcontext_handler.h
class Sp_rcontext_handler and its descendants
The implementation consists of the following parts:
- A new class sp_cursor_array deriving from Dynamic_array
- A new class Statement_rcontext which contains data shared
between sub-statements of a compound statement.
It has a member m_statement_cursors of the sp_cursor_array data type,
as well as open cursor counter. THD inherits from Statement_rcontext.
- A new data type handler Type_handler_sys_refcursor in plugins/type_cursor/
It is designed to store uint16 references -
positions of the cursor in THD::m_statement_cursors.
- Type_handler_sys_refcursor suppresses some derived numeric features.
When a SYS_REFCURSOR variable is used as an integer an error is raised.
- A new abstract class sp_instr_fetch_cursor. It's needed to share
the common code between "OPEN cur" (for static cursors) and
"OPER cur FOR stmt" (for SYS_REFCURSORs).
- New sp_instr classes:
* sp_instr_copen_by_ref - OPEN sys_ref_curor FOR stmt;
* sp_instr_cfetch_by_ref - FETCH sys_ref_cursor INTO targets;
* sp_instr_cclose_by_ref - CLOSE sys_ref_cursor;
* sp_instr_destruct_variable - to destruct SYS_REFCURSOR variables when
the execution goes out of the BEGIN..END block
where SYS_REFCURSOR variables are declared.
- New methods in LEX:
* sp_open_cursor_for_stmt - handles "OPEN sys_ref_cursor FOR stmt".
* sp_add_instr_fetch_cursor - "FETCH cur INTO targets" for both
static cursors and SYS_REFCURSORs.
* sp_close - handles "CLOSE cur" both for static cursors and SYS_REFCURSORs.
- Changes in cursor functions to handle both static cursors and SYS_REFCURSORs:
* Item_func_cursor_isopen
* Item_func_cursor_found
* Item_func_cursor_notfound
* Item_func_cursor_rowcount
- A new system variable @@max_open_cursors - to limit the number
of cursors (static and SYS_REFCURSORs) opened at the same time.
Its allowed range is [0-65536], with 50 by default.
- A new virtual method Type_handler::can_return_bool() telling
if calling item->val_bool() is allowed for Items of this data type,
or if otherwise the "Illegal parameter for operation" error should be raised
at fix_fields() time.
- New methods in Sp_rcontext_handler:
* get_cursor()
* get_cursor_by_ref()
- A new class Sp_rcontext_handler_statement to handle top level statement
wide cursors which are shared by all substatements.
- A new virtual method expr_event_handler() in classes Item and Field.
It's needed to close (and make available for a new OPEN)
unused THD::m_statement_cursors elements which do not have any references
any more. It can happen in various moments in time, e.g.
* after evaluation parameters of an SQL routine
* after assigning a cursor expression into a SYS_REFCURSOR variable
* when leaving a BEGIN..END block with SYS_REFCURSOR variables
* after setting OUT/INOUT routine actual parameters from formal
parameters.
It was not possible to use a package body variable as a
fetch target:
CREATE PACKAGE BODY pkg AS
vc INT := 0;
FUNCTION f1 RETURN INT AS
CURSOR cur IS SELECT 1 AS c FROM DUAL;
BEGIN
OPEN cur;
FETCH cur INTO vc; -- this returned "Undeclared variable: vc" error.
CLOSE cur;
RETURN vc;
END;
END;
FETCH assumed that all fetch targets reside of the same sp_rcontext
instance with the cursor. This patch fixes the problem.
Now a cursor and its fetch target can reside in different sp_rcontext
instances.
Details:
- Adding a helper class sp_rcontext_addr
(a combination of Sp_rcontext_handler pointer and an offset in the rcontext)
- Adding a new class sp_fetch_target deriving from sp_rcontext_addr.
Fetch targets in "FETCH cur INTO target1, target2 ..." are now collected
into this structure instead of sp_variable.
sp_variable cannot be used any more to store fetch targets,
because it does not have a pointer to Sp_rcontext_handler
(it only has the current rcontext offset).
- Removing members sp_instr_set members m_rcontext_handler and m_offset.
Deriving sp_instr_set from sp_rcontext_addr instead.
- Renaming sp_instr_cfetch member "List<sp_variable> m_varlist"
to "List<sp_fetch_target> m_fetch_target_list".
- Fixing LEX::sp_add_cfetch() to return the pointer to the
created sp_fetch_target instance (instead of returning bool).
This helps to make the grammar in sql_yacc.c simpler
- Renaming LEX::sp_add_cfetch() to LEX::sp_add_instr_cfetch(),
as `if(sp_add_cfetch())` changed its meaning to the opposite,
to avoid automatic wrong merge from earlier versions.
- Chaning the "List<sp_variable> *vars" parameter to sp_cursor::fetch
to have the data type "List<sp_fetch_target> *".
- Changing the data type of "List<sp_variable> &vars" in
sp_cursor::Select_fetch_into_spvars::send_data_to_variable_list()
to "List<sp_fetch_target> &".
- Adding THD helper methods get_rcontext() and get_variable().
- Moving the code from sql_yacc.yy into a new LEX method
LEX::make_fetch_target().
- Simplifying the grammar in sql_yacc.yy using the new LEX method.
Changing the data type of the bison rule sp_fetch_list from "void"
to "List<sp_fetch_target> *".
This patch includes a few changes to make the code easier to maintain:
- Renamed SQL_I_List::link_in_list to SQL_I_List::insert. link_in_list was
ambiguous as it could refer to a link or it could refer to a node
- Remove field_name local variable in multi_update::initialize_tables because
it is not used when creating the temporary tables
- multi_update changes:
- Move temp table callocs to init, a more natural location for them, and moved
tables_to_update to const member variable so we don't recompute it.
- Filter out jtbm tables and tables not in the update map, pushing those that
will be updated into an update_targets container. This simplifies checks and
loops in initialize_tables.
Alternative, more general fix, Variant 2.
The problem was as follows: Suppose we are running a PS/SP statement and
we get an error while doing optimization that is done once per statement
life. This may leave the statement data structures in an undefined state,
where it is not safe to execute it again.
The fix: introduce LEX::needs_reprepare and set it in such cases.
Make PS and SP runtime check it and re-prepare the statement before
executing it again.
We do not use Reprepare_observer, because it turns out it is tightly tied
to watching versions of statement's objects. For example, it must not be
used when running the statement for the first time, exactly when the
once-per-statement-lifetime optimizations are done.
Implement default values for parameters of stored routines
in both default and oracle mode.
- Default values for cursor parameters are *NOT* supported yet.
- An IN parameter with DEFAULT followed by an OUT param is not supported yet.
This combination will be enabled together with the arrow syntax:
sp1(v=>p2)
The default values can be either literals or expressions.
When it is an expression, it is only evaluated if the parameter
has not been supplied by the caller
(important if the expression has side effects).
create templates
thd->alloc<X>(n) to use instead of (X*)thd->alloc(sizeof(X)*n)
and the same for thd->calloc(). By the default the type is char,
so old usage of thd->alloc(size) works too.
to explicit row_start/row_end columns
In case of adding both system fields of same type (length, unsigned
flag) as old implicit system fields do the rename of implicit system
fields to the ones specified in ALTER, remove SYSTEM_INVISIBLE flag in
that case. Correct PERIOD clause must be specified in ALTER as well.
MDEV-34904 Inplace alter for implicit to explicit versioning is broken
Whether ALTER goes inplace and how it goes inplace depends on
handler_flags which goes from alter_info->flags by this logic:
ha_alter_info->handler_flags|= (alter_info->flags & ~flags_to_remove);
ALTER_VERS_EXPLICIT was not in flags_to_remove and its value (1ULL <<
35) clashed with ALTER_ADD_NON_UNIQUE_NON_PRIM_INDEX.
ALTER_VERS_EXPLICIT must not affect inplace, it is SQL-only so we
remove it from handler_flags.
Adding support for the ROW data type in the stored function RETURNS clause:
- explicit ROW(..members...) for both sql_mode=DEFAULT and sql_mode=ORACLE
CREATE FUNCTION f1() RETURNS ROW(a INT, b VARCHAR(32)) ...
- anchored "ROW TYPE OF [db1.]table1" declarations for sql_mode=DEFAULT
CREATE FUNCTION f1() RETURNS ROW TYPE OF test.t1 ...
- anchored "[db1.]table1%ROWTYPE" declarations for sql_mode=ORACLE
CREATE FUNCTION f1() RETURN test.t1%ROWTYPE ...
Adding support for anchored scalar data types in RETURNS clause:
- "TYPE OF [db1.]table1.column1" for sql_mode=DEFAULT
CREATE FUNCTION f1() RETURNS TYPE OF test.t1.column1;
- "[db1.]table1.column1" for sql_mode=ORACLE
CREATE FUNCTION f1() RETURN test.t1.column1%TYPE;
Details:
- Adding a new sql_mode_t parameter to
sp_head::create()
sp_head::sp_head()
sp_package::create()
sp_package::sp_package()
to guarantee early initialization of sp_head::m_sql_mode.
Before this change, this member was not initialized at all during
CREATE FUNCTION/PROCEDURE/PACKAGE statements, and was not used.
Now it needs to be initialized to write properly the
mysql.proc.returns column, according to the create time sql_mode.
- Code refactoring to make the things simpler and functions smaller:
* Adding a new method
Field_row::row_create_fields(THD *thd, List<Spvar_definition> *list)
to make a Virtual_tmp_table with Fields for ROW members
from an explicit definition.
* Adding a new method
Field_row::row_create_fields(THD *thd, const Spvar_definition &def)
to make a Virtual_tmp_table with Fields for ROW members
from an explicit or a table anchored definition.
* Adding a new method
Item_args::add_array_of_item_field(THD *thd, const Virtual_tmp_table &vtable)
to create and array of Item_field corresponding to all Field instances
in a Virtual_tmp_table
* Removing Item_field_row::row_create_items(). It was decomposed
into the new methods described above.
* Moving the code from the loop body in sp_rcontext::init_var_items()
into a separate method Spvar_definition::make_item_field_row(),
to make the code clearer (smaller functions).
make_item_field_row() itself uses the new methods described above.
- Changing the data type of sp_head::m_return_field_def
from Column_definition to Spvar_definition.
So now it supports not only SQL column field types,
but also explicit ROW and anchored ROW data types,
as well as anchored column types.
- Adding a new Column_definition parameter to sp_head::create_result_field().
Before this patch, create_result_field() took the definition only
from m_return_field_def. Now it's also called with a local Column_definition
variable which contains the explicit definition resolved from an
anchored defition.
- Modifying sql_yacc.yy to support the new grammar.
Adding new helper methods:
* sf_return_fill_definition_row()
* sf_return_fill_definition_rowtype_of()
* sf_return_fill_definition_type_of()
- Fixing tests in:
* Virtual_tmp_table::setup_field_pointers() in sql_select.cc
* Send_field::normalize() in field.h
* store_column_type()
to prevent calling Type_handler_row::field_type(),
which is implemented a DBUG_ASSERT(0).
Before this patch the affected methods and functions were called only
for scalar data types. Now ROW is also possible.
- Adding a new virtual method Field::cols()
- Overriding methods:
Item_func_sp::cols()
Item_func_sp::element_index()
Item_func_sp::check_cols()
Item_func_sp::bring_value()
to support the ROW data type.
- Extending the rule sp_return_type to support
* explicit ROW and anchored ROW data types
* anchored scalar data types
- Overriding Field_row::sql_type() to print
the data type of an explicit ROW.
Changing the return type of the following functions:
- CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(), NOW()
- SYSDATE()
- FROM_UNIXTIME()
from DATETIME to TIMESTAMP.
Note, the old function NOW() returning DATETIME is still available
as LOCALTIMESTAMP or LOCALTIMESTAMP(), e.g.:
SELECT
LOCALTIMESTAMP, -- DATETIME
CURRENT_TIMESTAMP; -- TIMESTAMP
The change in the functions return data type fixes some problems
that occurred near a DST change:
- Problem #1
INSERT INTO t1 (timestamp_field) VALUES (CURRENT_TIMESTAMP);
INSERT INTO t1 (timestamp_field) VALUES (COALESCE(CURRENT_TIMESTAMP));
could result into two different values inserted.
- Problem #2
INSERT INTO t1 (timestamp_field) VALUES (FROM_UNIXTIME(1288477526));
INSERT INTO t1 (timestamp_field) VALUES (FROM_UNIXTIME(1288477526+3600));
could result into two equal TIMESTAMP values near a DST change.
Additional changes:
- FROM_UNIXTIME(0) now returns SQL NULL instead of '1970-01-01 00:00:00'
(assuming time_zone='+00:00')
- UNIX_TIMESTAMP('1970-01-01 00:00:00') now returns SQL NULL instead of 0
(assuming time_zone='+00:00'
These additional changes are needed for consistency with TIMESTAMP fields,
which cannot store '1970-01-01 00:00:00 +00:00'
The reason for the crash was the code assumed that
SELECT_LEX.ref_pointer_array would be initialized with zero, which was
not the case. This cause the test of
if (!select->ref_pointer_array[counter]) in item.cc to be unpredictable
and causes crashes.
Fixed by zero-filling ref_pointer_array on allocation.
Extend derived table syntax to support column name assignment.
(subquery expression) [as|=] ident [comma separated column name list].
Prior to this patch, the optional comma separated column name list is
not supported.
Processing within the unit of the subquery expression will use
original column names, outside the unit will use the new names.
For example, in the query
select a1, a2 from
(select c1, c2, c3 from t1 where c2 > 0) as dt (a1, a2, a3)
where a2 > 10;
we see the second column of the derived table dt being used both within,
(where c2 > 0), and outside, (where a2 > 10), the specification.
Both conditions apply to t1.c2.
When multiple unit preparations are required, such as when being used within
a prepared statement or procedure, original column names are needed for
correct resolution. Original names are reset within mysql_derived_reinit().
Item_holder items, used for result tables in both TVC and union preparations
are renamed before use within st_select_lex_unit::prepare().
During wildcard expansion, if column names are present, items names are
set directly after creation.
Reviewed by Igor Babaev (igor@mariadb.com)
The memory leak happened on second execution of a prepared statement
that runs UPDATE statement with correlated subquery in right hand side of
the SET clause. In this case, invocation of the method
table->stat_records()
could return the zero value that results in going into the 'if' branch
that handles impossible where condition. The issue is that this condition
branch missed saving of leaf tables that has to be performed as first
condition optimization activity. Later the PS statement memory root
is marked as read only on finishing first time execution of the prepared
statement. Next time the same statement is executed it hits the assertion
on attempt to allocate a memory on the PS memory root marked as read only.
This memory allocation takes place by the sequence of the following
invocations:
Prepared_statement::execute
mysql_execute_command
Sql_cmd_dml::execute
Sql_cmd_update::execute_inner
Sql_cmd_update::update_single_table
st_select_lex::save_leaf_tables
List<TABLE_LIST>::push_back
To fix the issue, add the flag SELECT_LEX::leaf_tables_saved to control
whether the method SELECT_LEX::save_leaf_tables() has to be called or
it has been already invoked and no more invocation required.
Similar issue could take place on running the DELETE statement with
the LIMIT clause in PS/SP mode. The reason of memory leak is the same as for
UPDATE case and be fixed in the same way.