1
0
mirror of https://github.com/MariaDB/server.git synced 2025-08-08 11:22:35 +03:00
Commit Graph

8 Commits

Author SHA1 Message Date
Oleksandr Byelkin
fa69b085b1 Merge branch '11.3' into 11.4 2024-02-15 13:53:21 +01:00
Sergei Golubchik
abcd23add2 MDEV-31857 enable --ssl-verify-server-cert by default in the internal client
enable ssl + ssl_verify_server_cert in the internal client too

* fix replication tests to disable master_ssl_verify_server_cert
  because accounts are passwordless - except rpl.rpl_ssl1
* fix federated/federatedx/connect to disable SSL_VERIFY_SERVER_CERT
  because they cannot configure an ssl connection
* fix spider to disable ssl_verify_server_cert, if configuration
  says so, as spider _can_ configure an ssl connection
* memory leak in embedded test-connect
2024-02-04 22:19:19 +01:00
Oleksandr Byelkin
d21cb43db1 Merge branch '11.2' into 11.3 2024-02-04 16:42:31 +01:00
Michael Widenius
7af50e4df4 MDEV-32551: "Read semi-sync reply magic number error" warnings on master
rpl_semi_sync_slave_enabled_consistent.test and the first part of
the commit message comes from Brandon Nesterenko.

A test to show how to induce the "Read semi-sync reply magic number
error" message on a primary. In short, if semi-sync is turned on
during the hand-shake process between a primary and replica, but
later a user negates the rpl_semi_sync_slave_enabled variable while
the replica's IO thread is running; if the io thread exits, the
replica can skip a necessary call to kill_connection() in
repl_semisync_slave.slave_stop() due to its reliance on a global
variable. Then, the replica will send a COM_QUIT packet to the
primary on an active semi-sync connection, causing the magic number
error.

The test in this patch exits the IO thread by forcing an error;
though note a call to STOP SLAVE could also do this, but it ends up
needing more synchronization. That is, the STOP SLAVE command also
tries to kill the VIO of the replica, which makes a race with the IO
thread to try and send the COM_QUIT before this happens (which would
need more debug_sync to get around). See THD::awake_no_mutex for
details as to the killing of the replica’s vio.

Notes:
- The MariaDB documentation does not make it clear that when one
  enables semi-sync replication it does not matter if one enables
  it first in the master or slave. Any order works.

Changes done:
- The rpl_semi_sync_slave_enabled variable is now a default value for
  when semisync is started. The variable does not anymore affect
  semisync if it is already running. This fixes the original reported
  bug.  Internally we now use repl_semisync_slave.get_slave_enabled()
  instead of rpl_semi_sync_slave_enabled. To check if semisync is
  active on should check the @@rpl_semi_sync_slave_status variable (as
  before).
- The semisync protocol conflicts in the way that the original
  MySQL/MariaDB client-server protocol was designed (client-server
  send and reply packets are strictly ordered and includes a packet
  number to allow one to check if a packet is lost). When using
  semi-sync the master and slave can send packets at 'any time', so
  packet numbering does not work. The 'solution' has been that each
  communication starts with packet number 1, but in some cases there
  is still a chance that the packet number check can fail.  Fixed by
  adding a flag (pkt_nr_can_be_reset) in the NET struct that one can
  use to signal that packet number checking should not be done. This
  is flag is set when semi-sync is used.
- Added Master_info::semi_sync_reply_enabled to allow one to configure
  some slaves with semisync and other other slaves without semisync.
  Removed global variable semi_sync_need_reply that would not work
  with multi-master.
- Repl_semi_sync_master::report_reply_packet() can now recognize
  the COM_QUIT packet from semisync slave and not give a
  "Read semi-sync reply magic number error" error for this case.
  The slave will be removed from the Ack listener.
- On Windows, don't stop semisync Ack listener just because one
  slave connection is using socket_id > FD_SETSIZE.
- Removed busy loop in Ack_receiver::run() by using
 "Self-pipe trick" to signal new slave and stop Ack_receiver.
- Changed some Repl_semi_sync_slave functions that always returns 0
  from int to void.
- Added Repl_semi_sync_slave::slave_reconnect().
- Removed dummy_function Repl_semi_sync_slave::reset_slave().
- Removed some duplicate semisync notes from the error log.
- Add test of "if (get_slave_enabled() && semi_sync_need_reply)"
  before calling Repl_semi_sync_slave::slave_reply().
  (Speeds up the code as we can skip all initializations).
- If epl_semisync_slave.slave_reply() fails, we disable semisync
  for that connection.
- We do not call semisync.switch_off() if there are no active slaves.
  Instead we check in Repl_semi_sync_master::commit_trx() if there are
  no active threads. This simplices the code.
- Changed assert() to DBUG_ASSERT() to ensure that the DBUG log is
  flushed in case of asserts.
- Removed the internal rpl_semi_sync_slave_status as it is not needed
  anymore. The @@rpl_semi_sync_slave_status status variable is now
  mapped to rpl_semi_sync_enabled.
- Removed rpl_semi_sync_slave_enabled  as it is not needed anymore.
  Repl_semi_sync_slave::get_slave_enabled() contains the active status.
- Added checking that we do not add a slave twice with
  Ack_receiver::add_slave(). This could happen with old code.
- Removed Repl_semi_sync_master::check_and_switch() as it is not
  needed anymore.
- Ensure that when we call Ack_receiver::remove_slave() that the slave
  is removed from the listener before function returns.
- Call listener.listen_on_sockets() outside of mutex for better
  performance and less contested mutex.
- Ensure that listening is ignoring newly added slaves when checking for
  responses.
- Fixed the master ack_receiver listener is not killed if there are no
  connected slaves (and thus stop semisync handling of future
  connections). This could happen if all slaves sockets where would be
  marked as unreliable.
- Added unlink() to base_ilist_iterator and remove() to
  I_List_iterator. This enables us to remove 'dead' slaves in
  Ack_recever::run().
- kill_zombie_dump_threads() now does killing of dump threads properly.
  - It can now kill several threads (should be impossible but could
    happen if IO slaves reconnects very fast).
  - We now wait until the dump thread is done before starting the
    dump.
- Added an error if kill_zombie_dump_threads() fails.
- Set thd->variables.server_id before calling
  kill_zombie_dump_threads(). This simplies the code.
- Added a lot of comments both in code and tests.
- Removed DBUG_EVALUATE_IF "failed_slave_start" as it is not used.

Test changes:
- rpl.rpl_session_var2 added which runs rpl.rpl_session_var test with
  semisync enabled.
- Some timings changed slight with startup of slave which caused
  rpl_binlog_dump_slave_gtid_state_info.text to fail as it checked the
  error log file before the slave had started properly. Fixed by
  adding wait_for_pattern_in_file.inc that allows waiting for the
  pattern to appear in the log file.
- Tests have been updated so that we first set
  rpl_semi_sync_master_enabled on the master and then set
  rpl_semi_sync_slave_enabled on the slaves (this is according to how
  the MariaDB documentation document how to setup semi-sync).
- Error text "Master server does not have semi-sync enabled" has been
  replaced with "Master server does not support semi-sync" for the
  case when the master supports semi-sync but semi-sync is not
  enabled.

Other things:
- Some trivial cleanups in Repl_semi_sync_master::update_sync_header().
- We should in 11.3 changed the default value for
  rpl-semi-sync-master-wait-no-slave from TRUE to FALSE as the TRUE
  does not make much sense as default. The main difference with using
  FALSE is that we do not wait for semisync Ack if there are no slave
  threads.  In the case of TRUE we wait once, which did not bring any
  notable benefits except slower startup of master configured for
  using semisync.

Co-author: Brandon Nesterenko <brandon.nesterenko@mariadb.com>

This solves the problem reported in MDEV-32960 where a new
slave may not be registered in time and the master disables
semi sync because of that.
2024-01-23 13:03:11 +02:00
Sergei Golubchik
82174dae06 MDEV-32104 remove deprecated features
In particular:

* @@debug
  deprecated since 5.5.37
* sr_YU locale
  deprecated since 10.0.11
* "engine_condition_pushdown" in the @@optimizer_switch
  deprecated since 10.1.1
* @@date_format, @@datetime_format, @@time_format, @@max_tmp_tables
  deprecated since  10.1.2
* @@wsrep_causal_reads
  deprecated since 10.1.3
* "parser" in mroonga table comment
  deprecated since 10.2.11
2023-09-30 14:43:12 +02:00
Marko Mäkelä
3cef4f8f0f MDEV-515 Reduce InnoDB undo logging for insert into empty table
We implement an idea that was suggested by Michael 'Monty' Widenius
in October 2017: When InnoDB is inserting into an empty table or partition,
we can write a single undo log record TRX_UNDO_EMPTY, which will cause
ROLLBACK to clear the table.

For this to work, the insert into an empty table or partition must be
covered by an exclusive table lock that will be held until the transaction
has been committed or rolled back, or the INSERT operation has been
rolled back (and the table is empty again), in lock_table_x_unlock().

Clustered index records that are covered by the TRX_UNDO_EMPTY record
will carry DB_TRX_ID=0 and DB_ROLL_PTR=1<<55, and thus they cannot
be distinguished from what MDEV-12288 leaves behind after purging the
history of row-logged operations.

Concurrent non-locking reads must be adjusted: If the read view was
created before the INSERT into an empty table, then we must continue
to imagine that the table is empty, and not try to read any records.
If the read view was created after the INSERT was committed, then
all records must be visible normally. To implement this, we introduce
the field dict_table_t::bulk_trx_id.

This special handling only applies to the very first INSERT statement
of a transaction for the empty table or partition. If a subsequent
statement in the transaction is modifying the initially empty table again,
we must enable row-level undo logging, so that we will be able to
roll back to the start of the statement in case of an error (such as
duplicate key).

INSERT IGNORE will continue to use row-level logging and locking, because
implementing it would require the ability to roll back the latest row.
Since the undo log that we write only allows us to roll back the entire
statement, we cannot support INSERT IGNORE. We will introduce a
handler::extra() parameter HA_EXTRA_IGNORE_INSERT to indicate to storage
engines that INSERT IGNORE is being executed.

In many test cases, we add an extra record to the table, so that during
the 'interesting' part of the test, row-level locking and logging will
be used.

Replicas will continue to use row-level logging and locking until
MDEV-24622 has been addressed. Likewise, this optimization will be
disabled in Galera cluster until MDEV-24623 enables it.

dict_table_t::bulk_trx_id: The latest active or committed transaction
that initiated an insert into an empty table or partition.
Protected by exclusive table lock and a clustered index leaf page latch.

ins_node_t::bulk_insert: Whether bulk insert was initiated.

trx_t::mod_tables: Use C++11 style accessors (emplace instead of insert).
Unlike earlier, this collection will cover also temporary tables.

trx_mod_table_time_t: Add start_bulk_insert(), end_bulk_insert(),
is_bulk_insert(), was_bulk_insert().

trx_undo_report_row_operation(): Before accessing any undo log pages,
invoke trx->mod_tables.emplace() in order to determine whether undo
logging was disabled, or whether this is the first INSERT and we are
supposed to write a TRX_UNDO_EMPTY record.

row_ins_clust_index_entry_low(): If we are inserting into an empty
clustered index leaf page, set the ins_node_t::bulk_insert flag for
the subsequent trx_undo_report_row_operation() call.

lock_rec_insert_check_and_lock(), lock_prdt_insert_check_and_lock():
Remove the redundant parameter 'flags' that can be checked in the caller.

btr_cur_ins_lock_and_undo(): Simplify the logic. Correctly write
DB_TRX_ID,DB_ROLL_PTR after invoking trx_undo_report_row_operation().

trx_mark_sql_stat_end(), ha_innobase::extra(HA_EXTRA_IGNORE_INSERT),
ha_innobase::external_lock(): Invoke trx_t::end_bulk_insert() so that
the next statement will not be covered by table-level undo logging.

ReadView::changes_visible(trx_id_t) const: New accessor for the case
where the trx_id_t is not read from a potentially corrupted index page
but directly from the memory. In this case, we can skip a sanity check.

row_sel(), row_sel_try_search_shortcut(), row_search_mvcc():
row_sel_try_search_shortcut_for_mysql(),
row_merge_read_clustered_index(): Check dict_table_t::bulk_trx_id.

row_sel_clust_sees(): Replaces lock_clust_rec_cons_read_sees().

lock_sec_rec_cons_read_sees(): Replaced with lower-level code.

btr_root_page_init(): Refactored from btr_create().

dict_index_t::clear(), dict_table_t::clear(): Empty an index or table,
for the ROLLBACK of an INSERT operation.

ROW_T_EMPTY, ROW_OP_EMPTY: Note a concurrent ROLLBACK of an INSERT
into an empty table.

This is joint work with Thirunarayanan Balathandayuthapani,
who created a working prototype.
Thanks to Matthias Leich for extensive testing.
2021-01-25 18:41:27 +02:00
Alice Sherepa
df1eefb2ad MDEV-16272 rpl.rpl_semisync_ali_issues failed in buildbot, SHOW variable was done instead of waiting for the value of that variable 2021-01-07 17:53:04 +01:00
Andrei Elkin
7bcf5e2907 MDEV-15238 rpl.perf_buildin_semisync_issue40 sporadically fails on BB
The test was used to result in mismatch due to unaccounted specifics
of the master-slave handshake protocol that sets the Slave_IO_Running
status to true while the semisync master status is set to active a bit later.

The test is refined to expect that.
2018-02-07 19:59:20 +02:00