The MDEV-29693 conflict resolution is from Monty, as well as is
a bug fix where ANALYZE TABLE wrongly built histograms for
single-column PRIMARY KEY.
Also includes a fix for safe_malloc error reporting.
Other things:
- Copied main.log_slow from 10.4 to avoid mtr issue
Disabled test:
- spider/bugfix.mdev_27239 because we started to get
+Error 1429 Unable to connect to foreign data source: localhost
-Error 1158 Got an error reading communication packets
- main.delayed
- Bug#54332 Deadlock with two connections doing LOCK TABLE+INSERT DELAYED
This part is disabled for now as it fails randomly with different
warnings/errors (no corruption).
Allow ALTER TABLE ... IMPORT TABLESPACE without creating the table
followed by discarding the tablespace.
That is, assuming we want to import table t1 to t2, instead of
CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 DISCARD TABLESPACE;
FLUSH TABLES t1 FOR EXPORT;
--copy_file $MYSQLD_DATADIR/test/t1.cfg $MYSQLD_DATADIR/test/t2.cfg
--copy_file $MYSQLD_DATADIR/test/t1.ibd $MYSQLD_DATADIR/test/t2.ibd
UNLOCK TABLES;
ALTER TABLE t2 IMPORT TABLESPACE;
We can simply do
FLUSH TABLES t1 FOR EXPORT;
--copy_file $MYSQLD_DATADIR/test/t1.cfg $MYSQLD_DATADIR/test/t2.cfg
--copy_file $MYSQLD_DATADIR/test/t1.frm $MYSQLD_DATADIR/test/t2.frm
--copy_file $MYSQLD_DATADIR/test/t1.ibd $MYSQLD_DATADIR/test/t2.ibd
UNLOCK TABLES;
ALTER TABLE t2 IMPORT TABLESPACE;
We achieve this by creating a "stub" table in the second scenario
while opening the table, where t2 does not exist but needs to import
from t1. The "stub" table is similar to a table that is created but
then instructed to discard its tablespace.
We include tests with various row formats, encryption, with indexes
and auto-increment.
This patch is the result of running
run-clang-tidy -fix -header-filter=.* -checks='-*,modernize-use-equals-default' .
Code style changes have been done on top. The result of this change
leads to the following improvements:
1. Binary size reduction.
* For a -DBUILD_CONFIG=mysql_release build, the binary size is reduced by
~400kb.
* A raw -DCMAKE_BUILD_TYPE=Release reduces the binary size by ~1.4kb.
2. Compiler can better understand the intent of the code, thus it leads
to more optimization possibilities. Additionally it enabled detecting
unused variables that had an empty default constructor but not marked
so explicitly.
Particular change required following this patch in sql/opt_range.cc
result_keys, an unused template class Bitmap now correctly issues
unused variable warnings.
Setting Bitmap template class constructor to default allows the compiler
to identify that there are no side-effects when instantiating the class.
Previously the compiler could not issue the warning as it assumed Bitmap
class (being a template) would not be performing a NO-OP for its default
constructor. This prevented the "unused variable warning".
This also fixes part of MDEV-29835 Partial server freeze
which is caused by violations of the latching order that was
defined in https://dev.mysql.com/worklog/task/?id=6326
(WL#6326: InnoDB: fix index->lock contention). Unless the
current thread is holding an exclusive dict_index_t::lock,
it must acquire page latches in a strict parent-to-child,
left-to-right order. Not all cases of MDEV-29835 are fixed yet.
Failure to follow the correct latching order will cause deadlocks
of threads due to lock order inversion.
As part of these changes, the BTR_MODIFY_TREE mode is modified
so that an Update latch (U a.k.a. SX) will be acquired on the
root page, and eXclusive latches (X) will be acquired on all pages
leading to the leaf page, as well as any left and right siblings
of the pages along the path. The DEBUG_SYNC test innodb.innodb_wl6326
will be removed, because at the time the DEBUG_SYNC point is hit,
the thread is actually holding several page latches that will be
blocking a concurrent SELECT statement.
We also remove double bookkeeping that was caused due to excessive
information hiding in mtr_t::m_memo. We simply let mtr_t::m_memo
store information of latched pages, and ensure that
mtr_memo_slot_t::object is never a null pointer.
The tree_blocks[] and tree_savepoints[] were redundant.
buf_page_get_low(): If innodb_change_buffering_debug=1, to avoid
a hang, do not try to evict blocks if we are holding a latch on
a modified page. The test innodb.innodb-change-buffer-recovery
will be removed, because change buffering may no longer be forced
by debug injection when the change buffer comprises multiple pages.
Remove a debug assertion that could fail when
innodb_change_buffering_debug=1 fails to evict a page.
For other cases, the assertion is redundant, because we already
checked that right after the got_block: label. The test
innodb.innodb-change-buffering-recovery will be removed, because
due to this change, we will be unable to evict the desired page.
mtr_t::lock_register(): Register a change of a page latch
on an unmodified buffer-fixed block.
mtr_t::x_latch_at_savepoint(), mtr_t::sx_latch_at_savepoint():
Replaced by the use of mtr_t::upgrade_buffer_fix(), which now
also handles RW_S_LATCH.
mtr_t::set_modified(): For temporary tables, invoke
buf_page_t::set_modified() here and not in mtr_t::commit().
We will never set the MTR_MEMO_MODIFY flag on other than
persistent data pages, nor set mtr_t::m_modifications when
temporary data pages are modified.
mtr_t::commit(): Only invoke the buf_flush_note_modification() loop
if persistent data pages were modified.
mtr_t::get_already_latched(): Look up a latched page in mtr_t::m_memo.
This avoids many redundant entries in mtr_t::m_memo, as well as
redundant calls to buf_page_get_gen() for blocks that had already
been looked up in a mini-transaction.
btr_get_latched_root(): Return a pointer to an already latched root page.
This replaces btr_root_block_get() in cases where the mini-transaction
has already latched the root page.
btr_page_get_parent(): Fetch a parent page that was already latched
in BTR_MODIFY_TREE, by invoking mtr_t::get_already_latched().
If needed, upgrade the root page U latch to X.
This avoids bloating mtr_t::m_memo as well as performing redundant
buf_pool.page_hash lookups. For non-QUICK CHECK TABLE as well as for
B-tree defragmentation, we will invoke btr_cur_search_to_nth_level().
btr_cur_search_to_nth_level(): This will only be used for non-leaf
(level>0) B-tree searches that were formerly named BTR_CONT_SEARCH_TREE
or BTR_CONT_MODIFY_TREE. In MDEV-29835, this function could be
removed altogether, or retained for the case of
CHECK TABLE without QUICK.
btr_cur_t::left_block: Remove. btr_pcur_move_backward_from_page()
can retrieve the left sibling from the end of mtr_t::m_memo.
btr_cur_t::open_leaf(): Some clean-up.
btr_cur_t::search_leaf(): Replaces btr_cur_search_to_nth_level()
for searches to level=0 (the leaf level). We will never release
parent page latches before acquiring leaf page latches. If we need to
temporarily release the level=1 page latch in the BTR_SEARCH_PREV or
BTR_MODIFY_PREV latch_mode, we will reposition the cursor on the
child node pointer so that we will land on the correct leaf page.
btr_cur_t::pessimistic_search_leaf(): Implement new BTR_MODIFY_TREE
latching logic in the case that page splits or merges will be needed.
The parent pages (and their siblings) should already be latched on
the first dive to the leaf and be present in mtr_t::m_memo; there
should be no need for BTR_CONT_MODIFY_TREE. This pre-latching almost
suffices; it must be revised in MDEV-29835 and work-arounds removed
for cases where mtr_t::get_already_latched() fails to find a block.
rtr_search_to_nth_level(): A SPATIAL INDEX version of
btr_search_to_nth_level() that can search to any level
(including the leaf level).
rtr_search_leaf(), rtr_insert_leaf(): Wrappers for
rtr_search_to_nth_level().
rtr_search(): Replaces rtr_pcur_open().
rtr_latch_leaves(): Replaces btr_cur_latch_leaves(). Note that unlike
in the B-tree code, there is no error handling in case the sibling
pages are corrupted.
rtr_cur_restore_position(): Remove an unused constant parameter.
btr_pcur_open_on_user_rec(): Remove the constant parameter
mode=PAGE_CUR_GE.
row_ins_clust_index_entry_low(): Use a new
mode=BTR_MODIFY_ROOT_AND_LEAF to gain access to the root page
when mode!=BTR_MODIFY_TREE, to write the PAGE_ROOT_AUTO_INC.
BTR_SEARCH_TREE, BTR_CONT_SEARCH_TREE: Remove.
BTR_CONT_MODIFY_TREE: Note that this is only used by
rtr_search_to_nth_level().
btr_pcur_optimistic_latch_leaves(): Replaces
btr_cur_optimistic_latch_leaves().
ibuf_delete_rec(): Acquire exclusive ibuf.index->lock in order
to avoid a deadlock with ibuf_insert_low(BTR_MODIFY_PREV).
btr_blob_log_check_t(): Acquire a U latch on the root page,
so that btr_page_alloc() in btr_store_big_rec_extern_fields()
will avoid a deadlock.
btr_store_big_rec_extern_fields(): Assert that the root page latch
is being held.
Tested by: Matthias Leich
Reviewed by: Vladislav Lesin
This also fixes part of MDEV-29835 Partial server freeze
which is caused by violations of the latching order that was
defined in https://dev.mysql.com/worklog/task/?id=6326
(WL#6326: InnoDB: fix index->lock contention). Unless the
current thread is holding an exclusive dict_index_t::lock,
it must acquire page latches in a strict parent-to-child,
left-to-right order. Not all cases are fixed yet. Failure to
follow the correct latching order will cause deadlocks of threads
due to lock order inversion.
As part of these changes, the BTR_MODIFY_TREE mode is modified
so that an Update latch (U a.k.a. SX) will be acquired on the
root page, and eXclusive latches (X) will be acquired on all pages
leading to the leaf page, as well as any left and right siblings
of the pages along the path. The test innodb.innodb_wl6326
will be removed, because at the time the DEBUG_SYNC point is hit,
the thread is actually holding several page latches that will be
blocking a concurrent SELECT statement.
We also remove double bookkeeping that was caused due to excessive
information hiding in mtr_t::m_memo. We simply let mtr_t::m_memo
store information of latched pages, and ensure that
mtr_memo_slot_t::object is never a null pointer.
The tree_blocks[] and tree_savepoints[] were redundant.
mtr_t::get_already_latched(): Look up a latched page in mtr_t::m_memo.
This avoids many redundant entries in mtr_t::m_memo, as well as
redundant calls to buf_page_get_gen() for blocks that had already
been looked up in a mini-transaction.
btr_get_latched_root(): Return a pointer to an already latched root page.
This replaces btr_root_block_get() in cases where the mini-transaction
has already latched the root page.
btr_page_get_parent(): Fetch a parent page that was already latched
in BTR_MODIFY_TREE, by invoking mtr_t::get_already_latched().
If needed, upgrade the root page U latch to X.
This avoids bloating mtr_t::m_memo as well as redundant
buf_pool.page_hash lookups. For non-QUICK CHECK TABLE as well as for
B-tree defragmentation, we will invoke btr_cur_search_to_nth_level().
btr_cur_search_to_nth_level(): This will only be used for non-leaf
(level>0) B-tree searches that were formerly named BTR_CONT_SEARCH_TREE
or BTR_CONT_MODIFY_TREE. In MDEV-29835, this function could be
removed altogether, or retained for the case of
CHECK TABLE without QUICK.
btr_cur_t::search_leaf(): Replaces btr_cur_search_to_nth_level()
for searches to level=0 (the leaf level).
btr_cur_t::pessimistic_search_leaf(): Implement the new
BTR_MODIFY_TREE latching logic in the case that page splits
or merges will be needed. The parent pages (and their siblings)
should already be latched on the first dive to the leaf and be
present in mtr_t::m_memo; there should be no need for
BTR_CONT_MODIFY_TREE. This pre-latching almost suffices;
MDEV-29835 will have to revise it and remove work-arounds where
mtr_t::get_already_latched() fails to find a block.
rtr_search_to_nth_level(): A SPATIAL INDEX version of
btr_search_to_nth_level() that can search to any level
(including the leaf level).
rtr_search_leaf(), rtr_insert_leaf(): Wrappers for
rtr_search_to_nth_level().
rtr_search(): Replaces rtr_pcur_open().
rtr_cur_restore_position(): Remove an unused constant parameter.
btr_pcur_open_on_user_rec(): Remove the constant parameter
mode=PAGE_CUR_GE.
btr_cur_latch_leaves(): Update a pre-existing mtr_t::m_memo entry
for the current leaf page.
row_ins_clust_index_entry_low(): Use a new
mode=BTR_MODIFY_ROOT_AND_LEAF to gain access to the root page
when mode!=BTR_MODIFY_TREE, to write the PAGE_ROOT_AUTO_INC.
btr_cur_t::open_leaf(): Some clean-up.
mtr_t::lock_register(): Register a page latch on a buffer-fixed block.
BTR_SEARCH_TREE, BTR_CONT_SEARCH_TREE: Remove.
BTR_CONT_MODIFY_TREE: Note that this is only used by
rtr_search_to_nth_level().
btr_pcur_optimistic_latch_leaves(): Replaces
btr_cur_optimistic_latch_leaves().
ibuf_delete_rec(): Acquire ibuf.index->lock.u_lock() in order
to avoid a deadlock with ibuf_insert_low(BTR_MODIFY_PREV).
Tested by: Matthias Leich
InnoDB tables that lack a primary key (and any UNIQUE INDEX whose
all columns are NOT NULL) will use an internally generated index,
called GEN_CLUST_INDEX(DB_ROW_ID) in the InnoDB data dictionary,
and hidden from the SQL layer.
The 48-bit (6-byte) DB_ROW_ID is being assigned from a
global sequence that is persisted in the DICT_HDR page.
There is absolutely no reason for the DB_ROW_ID to be globally
unique across all InnoDB tables.
A downgrade to earlier versions will be prevented by the file format
change related to removing the InnoDB change buffer (MDEV-29694).
DICT_HDR_ROW_ID, dict_sys_t::row_id: Remove.
dict_table_t::row_id: The per-table sequence of DB_ROW_ID.
commit_try_rebuild(): Copy dict_table_t::row_id from the old table.
btr_cur_instant_init(), row_import_cleanup(): If needed, perform
the equivalent of SELECT MAX(DB_ROW_ID) to initialize
dict_table_t::row_id.
row_ins(): If needed, obtain DB_ROW_ID from dict_table_t::row_id.
Should it exceed the maximum 48-bit value, return DB_OUT_OF_FILE_SPACE
to prevent further inserts into the table.
dict_load_table_one(): Move a condition to btr_cur_instant_init_low()
so that dict_table_t::row_id will be restored also for
ROW_FORMAT=COMPRESSED tables.
Tested by: Matthias Leich
The purpose of the change buffer was to reduce random disk access,
which could be useful on rotational storage, but maybe less so on
solid-state storage.
When we wished to
(1) insert a record into a non-unique secondary index,
(2) delete-mark a secondary index record,
(3) delete a secondary index record as part of purge (but not ROLLBACK),
and the B-tree leaf page where the record belongs to is not in the buffer
pool, we inserted a record into the change buffer B-tree, indexed by
the page identifier. When the page was eventually read into the buffer
pool, we looked up the change buffer B-tree for any modifications to the
page, applied these upon the completion of the read operation. This
was called the insert buffer merge.
We remove the change buffer, because it has been the source of
various hard-to-reproduce corruption bugs, including those fixed in
commit 5b9ee8d819 and
commit 165564d3c3 but not limited to them.
A downgrade will fail with a clear message starting with
commit db14eb16f9 (MDEV-30106).
buf_page_t::state: Merge IBUF_EXIST to UNFIXED and
WRITE_FIX_IBUF to WRITE_FIX.
buf_pool_t::watch[]: Remove.
trx_t: Move isolation_level, check_foreigns, check_unique_secondary,
bulk_insert into the same bit-field. The only purpose of
trx_t::check_unique_secondary is to enable bulk insert into an
empty table. It no longer enables insert buffering for UNIQUE INDEX.
btr_cur_t::thr: Remove. This field was originally needed for change
buffering. Later, its use was extended to cover SPATIAL INDEX.
Much of the time, rtr_info::thr holds this field. When it does not,
we will add parameters to SPATIAL INDEX specific functions.
ibuf_upgrade_needed(): Check if the change buffer needs to be updated.
ibuf_upgrade(): Merge and upgrade the change buffer after all redo log
has been applied. Free any pages consumed by the change buffer, and
zero out the change buffer root page to mark the upgrade completed,
and to prevent a downgrade to an earlier version.
dict_load_tablespaces(): Renamed from
dict_check_tablespaces_and_store_max_id(). This needs to be invoked
before ibuf_upgrade().
btr_cur_open_at_rnd_pos(): Specialize for use in persistent statistics.
The change buffer merge does not need this function anymore.
btr_page_alloc(): Renamed from btr_page_alloc_low(). We no longer
allocate any change buffer pages.
btr_cur_open_at_rnd_pos(): Specialize for use in persistent statistics.
The change buffer merge does not need this function anymore.
row_search_index_entry(), btr_lift_page_up(): Add a parameter thr
for the SPATIAL INDEX case.
rtr_page_split_and_insert(): Specialized from btr_page_split_and_insert().
rtr_root_raise_and_insert(): Specialized from btr_root_raise_and_insert().
Note: The support for upgrading from the MySQL 3.23 or MySQL 4.0
change buffer format that predates the MySQL 4.1 introduction of
the option innodb_file_per_table was removed in MySQL 5.6.5
as part of mysql/mysql-server@69b6241a79
and MariaDB 10.0.11 as part of 1d0f70c2f8.
In the tests innodb.log_upgrade and innodb.log_corruption, we create
valid (upgraded) change buffer pages.
Tested by: Matthias Leich
os_file_read(): Merged with os_file_read_no_error_handling().
Crashing on a partial page read is as unhelpful as crashing on a
corrupted page read (commit 0b47c126e3).
Report the file name if it is available via IORequest.
btr_cur_t: Zero-initialize all fields in the default constructor.
btr_cur_t::index: Remove; it duplicated page_cur.index.
Many functions: Remove arguments that were duplicating
page_cur_t::index and page_cur_t::block.
page_cur_open_level(), btr_pcur_open_level(): Replaces
btr_cur_open_at_index_side() for dict_stats_analyze_index().
At the end, release all latches except the dict_index_t::lock
and the buf_page_t::lock on the requested page.
dict_stats_analyze_index(): Rely on mtr_t::rollback_to_savepoint()
to release all uninteresting page latches.
btr_search_guess_on_hash(): Simplify the logic, and invoke
mtr_t::rollback_to_savepoint().
We will use plain C++ std::vector<mtr_memo_slot_t> for mtr_t::m_memo.
In this way, we can avoid setting mtr_memo_slot_t::object to nullptr
and instead just remove garbage from m_memo.
mtr_t::rollback_to_savepoint(): Shrink the vector. We will be needing this
in dict_stats_analyze_index(), where we will release page latches and
only retain the index->lock in mtr_t::m_memo.
mtr_t::release_last_page(): Release the last acquired page latch.
Replaces btr_leaf_page_release().
mtr_t::release(const buf_block_t&): Release a single page latch.
Used in btr_pcur_move_backward_from_page().
mtr_t::memo_release(): Replaced with mtr_t::release().
mtr_t::upgrade_buffer_fix(): Acquire a latch for a buffer-fixed page.
This replaces the double bookkeeping in btr_cur_t::open_leaf().
Reviewed by: Vladislav Lesin
btr_cur_t::open_leaf(): Replaces btr_cur_open_at_index_side() for
most calls, except dict_stats_analyze_index(), which is the only
place where we need to open a page at the non-leaf level.
Use btr_block_get() for better error handling.
Also, use the enumeration type btr_latch_mode wherever possible.
Reviewed by: Vladislav Lesin
Per fsp0types.h, SDI is on tablespace flags position 14 where MariaDB
stores its pagesize. Flag at position 13, also in MariaDB pagesize
flags, is a MySQL encryption flag.
These are checked only if fsp_flags_is_valid fails, so valid MariaDB
pages sizes don't become errors.
The error message "Cannot reset LSNs in table" was rather specific and
not always true to replaced with more generic error.
ALTER TABLE tbl IMPORT TABLESPACE now reports Unsupported on MySQL
tablespace (rather than index corrupted) along with a server error
message.
MySQL innodb Errors are with with UNSUPPORTED rather than CORRUPTED
to avoid user anxiety.
Reviewer: Marko Mäkelä
The function rec_get_offsets_func() used to hit ut_error
due to an invalid rec_get_status() value of a
ROW_FORMAT!=REDUNDANT record. This fix is twofold:
We will not only avoid a crash on corruption in this case,
but we will also make more effort to validate each record
every time we are iterating over index page records.
rec_get_offsets_func(): Do not crash on a corrupted record.
page_rec_get_nth(): Return nullptr on error.
page_dir_slot_get_rec_validate(): Like page_dir_slot_get_rec(),
but validate the pointer and return nullptr on error.
page_cur_search_with_match(), page_cur_search_with_match_bytes(),
page_dir_split_slot(), page_cur_move_to_next():
Indicate failure in a return value.
page_cur_search(): Replaced with page_cur_search_with_match().
rec_get_next_ptr_const(), rec_get_next_ptr(): Replaced with
page_rec_get_next_low().
TODO: rtr_page_split_initialize_nodes(), rtr_update_mbr_field(),
and possibly other SPATIAL INDEX functions fail to properly handle
errors.
Reviewed by: Thirunarayanan Balathandayuthapani
Tested by: Matthias Leich
Performance tested by: Axel Schwenke
PageConverter::update_header(): Remove an unnecessary write.
The field that was originally called FIL_PAGE_FILE_FLUSH_LSN only
made sense for the first page of the system tablespace
(initially, for the first page of each file of the system tablespace).
It never had any meaning for .ibd files, and it lost its original
meaning in MariaDB Server 10.8.1 when
commit b07920b634 (MDEV-27199)
removed the ability to start without ib_logfile0.
If the most significant 32 bits of the LSN are nonzero, this
unnecessary write would write the wrong encryption key identifier
to the page. The first page of any file is never encrypted,
so normally those bytes should be 0 for any .ibd file.
A prominent remaining source of crashes on corrupted index pages
is page directory corruption.
A frequent caller of page_dir_find_owner_slot() is page_rec_get_prev().
Some of those calls can be replaced with simpler logic that is less
prone to fail.
page_dir_find_owner_slot(),
page_rec_get_prev(), page_rec_get_prev_const(),
btr_pcur_move_to_prev(), btr_pcur_move_to_prev_on_page(),
btr_cur_upd_rec_sys(),
page_delete_rec_list_end(),
rtr_page_copy_rec_list_end_no_locks(),
rtr_page_copy_rec_list_start_no_locks(): Return an error code on failure.
fil_space_t::io(), buf_page_get_low(): Use DB_CORRUPTION for
out-of-bounds page reads.
PageBulk::getSplitRec(), PageBulk::copyOut(): Simplify the code.
btr_validate_level(): Prevent some more CHECK TABLE crashes on
corrupted pages.
btr_block_get(), btr_pcur_move_to_next_page(): Implement some checks that
were previously only part of IndexPurge::next().
IndexPurge::next(): Use btr_pcur_move_to_next_page().