dict_stats_fetch_from_ps(): Acquire dict_sys.latch as few times as
possible, and release dict_sys.latch after invoking pars_sql(),
so that we will not be unnecessarily holding dict_sys.latch while
possibly waiting for data to be read into the buffer pool.
Note: Changes to the test innodb.stats_persistent
in commit e5c4c0842d (MDEV-35443)
are not merged, because the test scenario is impossible
due to commit e66928ab28 (MDEV-33462).
opt_calc_index_goodness(): Correct an inaccurate condition.
We can very well use a clustered index of a table that is subject
to online rebuild. But we must not choose an index that has not been
committed (it is a secondary index that was not fully created)
or that is corrupted or not a normal B-tree index.
opt_search_plan_for_table(): Remove some redundant code, now that
opt_calc_index_goodness() checks against corrupted indexes.
The test case allows this code to be exercised. The main observation
in the following:
./mtr --rr innodb.stats_persistent
rr replay var/log/mysqld.1.rr/latest-trace
should be that when opt_search_plan_for_table() is being invoked by
dict_stats_update_persistent() on the being-altered statistics table
in the 2nd call after ha_innobase::inplace_alter_table(),
and the fix in opt_calc_index_goodness() is absent,
it would choose the code path if (n_fields == 0), that is, a full
table scan, instead of searching for the record. The GDB commands to
execute in "rr replay" would be as follows:
break ha_innobase::inplace_alter_table
continue
break opt_search_plan_for_table
continue
continue
next
next
…
Reviewed by: Vladislav Lesin
In commit 75e82f71f1 the code to
rename internal tables for FULLTEXT INDEX that had been
created on Microsoft Windows using incompatible names
was removed. Let us also remove the related fault injection.
The cmake configuration step is single-threaded and already consuming
too much time. We should not make it worse by adding invocations like
MY_CHECK_CXX_COMPILER_FLAG().
Let us prefer something that works on any supported version
of GCC (4.8.5 or later) or clang, as well as recent versions
of the Intel C compiler.
This replaces commit 1fde785315
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c12
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
This is loosely based on the InnoDB changes in
mysql/mysql-server@97fd8b1b69
that I had developed in 2015 or 2016.
For each B-tree key field, we will allow a flag ASC/DESC to be associated.
When PRIMARY KEY fields are internally appended to secondary indexes,
the ASC/DESC attribute will be inherited, so that covering index scans
will work as expected.
Note: Until the subsequent commit, the DESC attribute will be ignored
(no HA_REVERSE_SORT flag will be written to .frm files).
dict_field_t::descending: A new flag to denote descending order.
cmp_data(), cmp_dfield_dfield(): Add a new parameter descending.
cmp_dtuple_rec(), cmp_dtuple_rec_with_match(): Add a parameter "index".
dtuple_coll_eq(): Replaces dtuple_coll_cmp().
cmp_dfield_dfield_eq_prefix(): Replaces cmp_dfield_dfield_like_prefix().
dict_index_t::is_btree(): Check whether the index is a regular
B-tree index (not SPATIAL, FULLTEXT, or the ibuf.index,
or a corrupted index.
btr_cur_search_to_nth_level_func(): Only attempt to use
the adaptive hash index if index->is_btree().
This function may also be invoked on ibuf.index, and
cmp_dtuple_rec_with_match_bytes() will no longer work on ibuf.index
because it assumes that the index and record fields exactly match.
The ibuf.index is a special variadic index tree.
Thanks to Thirunarayanan Balathandayuthapani for fixing some bugs:
MDEV-27439, MDEV-27374/MDEV-27445.
In commit 1bd681c8b3 (MDEV-25506 part 3)
we introduced a "fake instant timeout" when a transaction would wait
for a table or record lock while holding dict_sys.latch. This prevented
a deadlock of the server but could cause bogus errors for operations
on the InnoDB persistent statistics tables.
A better fix is to ensure that whenever a transaction is being
executed in the InnoDB internal SQL parser (which will for now
require dict_sys.latch to be held), it will already have acquired
all locks that could be required for the execution. So, we will
acquire the following locks upfront, before acquiring dict_sys.latch:
(1) MDL on the affected user table (acquired by the SQL layer)
(2) If applicable (not for RENAME TABLE): InnoDB table lock
(3) If persistent statistics are going to be modified:
(3.a) MDL_SHARED on mysql.innodb_table_stats, mysql.innodb_index_stats
(3.b) exclusive table locks on the statistics tables
(4) Exclusive table locks on the InnoDB data dictionary tables
(not needed in ANALYZE TABLE and the like)
Note: Acquiring exclusive locks on the statistics tables may cause
more locking conflicts between concurrent DDL operations.
Notably, RENAME TABLE will lock the statistics tables
even if no persistent statistics are enabled for the table.
DROP DATABASE will only acquire locks on statistics tables if
persistent statistics are enabled for the tables on which the
SQL layer is invoking ha_innobase::delete_table().
For any "garbage collection" in innodb_drop_database(), a timeout
while acquiring locks on the statistics tables will result in any
statistics not being deleted for any tables that the SQL layer
did not know about.
If innodb_defragment=ON, information may be written to the statistics
tables even for tables for which InnoDB persistent statistics are
disabled. But, DROP TABLE will no longer attempt to delete that
information if persistent statistics are not enabled for the table.
This change should also fix the hangs related to InnoDB persistent
statistics and STATS_AUTO_RECALC (MDEV-15020) as well as
a bug that running ALTER TABLE on the statistics tables
concurrently with running ALTER TABLE on InnoDB tables could
cause trouble.
lock_rec_enqueue_waiting(), lock_table_enqueue_waiting():
Do not issue a fake instant timeout error when the transaction
is holding dict_sys.latch. Instead, assert that the dict_sys.latch
is never being held here.
lock_sys_tables(): A new function to acquire exclusive locks on all
dictionary tables, in case DROP TABLE or similar operation is
being executed. Locking non-hard-coded tables is optional to avoid
a crash in row_merge_drop_temp_indexes(). The SYS_VIRTUAL table was
introduced in MySQL 5.7 and MariaDB Server 10.2. Normally, we require
all these dictionary tables to exist before executing any DDL, but
the function row_merge_drop_temp_indexes() is an exception.
When upgrading from MariaDB Server 10.1 or MySQL 5.6 or earlier,
the table SYS_VIRTUAL would not exist at this point.
ha_innobase::commit_inplace_alter_table(): Invoke
log_write_up_to() while not holding dict_sys.latch.
dict_sys_t::remove(), dict_table_close(): No longer try to
drop index stubs that were left behind by aborted online ADD INDEX.
Such indexes should be dropped from the InnoDB data dictionary by
row_merge_drop_indexes() as part of the failed DDL operation.
Stubs for aborted indexes may only be left behind in the
data dictionary cache.
dict_stats_fetch_from_ps(): Use a normal read-only transaction.
ha_innobase::delete_table(), ha_innobase::truncate(), fts_lock_table():
While waiting for purge to stop using the table,
do not hold dict_sys.latch.
ha_innobase::delete_table(): Implement a work-around for the rollback
of ALTER TABLE...ADD PARTITION. MDL_EXCLUSIVE would not be held if
ALTER TABLE hits lock_wait_timeout while trying to upgrade the MDL
due to a conflicting LOCK TABLES, such as in the first ALTER TABLE
in the test case of Bug#53676 in parts.partition_special_innodb.
Therefore, we must explicitly stop purge, because it would not be
stopped by MDL.
dict_stats_func(), btr_defragment_chunk(): Allocate a THD so that
we can acquire MDL on the InnoDB persistent statistics tables.
mysqltest_embedded: Invoke ha_pre_shutdown() before free_used_memory()
in order to avoid ASAN heap-use-after-free related to acquire_thd().
trx_t::dict_operation_lock_mode: Changed the type to bool.
row_mysql_lock_data_dictionary(), row_mysql_unlock_data_dictionary():
Implemented as macros.
rollback_inplace_alter_table(): Apply an infinite timeout to lock waits.
innodb_thd_increment_pending_ops(): Wrapper for
thd_increment_pending_ops(). Never attempt async operation for
InnoDB background threads, such as the trx_t::commit() in
dict_stats_process_entry_from_recalc_pool().
lock_sys_t::cancel(trx_t*): Make dictionary transactions immune to KILL.
lock_wait(): Make dictionary transactions immune to KILL, and to
lock wait timeout when waiting for locks on dictionary tables.
parts.partition_special_innodb: Use lock_wait_timeout=0 to instantly
get ER_LOCK_WAIT_TIMEOUT.
main.mdl: Filter out MDL on InnoDB persistent statistics tables
Reviewed by: Thirunarayanan Balathandayuthapani
que_eval_sql(): Remove the parameter lock_dict. The only caller
with lock_dict=true was dict_stats_exec_sql(), which will now
explicitly invoke dict_sys.lock() and dict_sys.unlock() by itself.
row_import_cleanup(): Do not unnecessarily lock the dictionary.
Concurrent access to the table during ALTER TABLE...IMPORT TABLESPACE
is prevented by MDL and the fact that there cannot exist any
undo log or change buffer records that would refer to the table
or tablespace.
row_import_for_mysql(): Do not unnecessarily lock the dictionary
while accessing fil_system. Thanks to MDL_EXCLUSIVE that was acquired
by the SQL layer, only one IMPORT may be in effect for the table name.
row_quiesce_set_state(): Do not unnecessarily lock the dictionary.
The dict_table_t::quiesce state is documented to be protected by
all index latches, which we are acquiring.
dict_table_close(): Introduce a simpler variant with fewer parameters.
dict_table_close(): Reduce the amount of calls.
We can simply invoke dict_table_t::release() on startup or
in DDL operations, or when the table is inaccessible.
In none of these cases, there is no need to invalidate the
InnoDB persistent statistics.
pars_info_t::graph_owns_us: Remove (unused).
pars_info_free(): Define inline.
fts_delete(), trx_t::evict_table(), row_prebuilt_free(),
row_rename_table_for_mysql(): Simplify.
row_mysql_lock_data_dictionary(): Remove some references;
use dict_sys.lock() and dict_sys.unlock() instead.
row_mysql_lock_table(): Remove. Use lock_table_for_trx() instead.
ha_innobase::check_if_supported_inplace_alter(),
row_create_table_for_mysql(): Simply assert dict_sys.sys_tables_exist().
In commit 49e2c8f0a6 and
commit 1bd681c8b3 srv_start()
actually guarantees that the system tables will exist,
or the server is in read-only mode, or startup will fail.
Reviewed by: Thirunarayanan Balathandayuthapani
sym_tab_free_private(): Do not call dict_table_close(), but
simply invoke dict_table_t::release(), which we can do without
locking the whole dictionary cache. (Note: On user tables it
may still be necessary to invoke dict_table_close(), so that
InnoDB persistent statistics will be deinitialized as expected.)
fts_check_corrupt(), row_fts_merge_insert(): Invoke
aux_table->release() to simplify the code. This is never a user table.
fts_que_graph_free(), fts_que_graph_free_check_lock(): Replaced with
que_graph_free().
Reviewed by: Thirunarayanan Balathandayuthapani
In the parent commit, dict_sys.latch could theoretically have been
replaced with a mutex. But, we can do better and merge dict_sys.mutex
into dict_sys.latch. Generally, every occurrence of dict_sys.mutex_lock()
will be replaced with dict_sys.lock().
The PERFORMANCE_SCHEMA instrumentation for dict_sys_mutex
will be removed along with dict_sys.mutex. The dict_sys.latch
will remain instrumented as dict_operation_lock.
Some use of dict_sys.lock() will be replaced with dict_sys.freeze(),
which we will reintroduce for the new shared mode. Most notably,
concurrent table lookups are possible as long as the tables are present
in the dict_sys cache. In particular, this will allow more concurrency
among InnoDB purge workers.
Because dict_sys.mutex will no longer 'throttle' the threads that purge
InnoDB transaction history, a performance degradation may be observed
unless innodb_purge_threads=1.
The table cache eviction policy will become FIFO-like,
similar to what happened to fil_system.LRU
in commit 45ed9dd957.
The name of the list dict_sys.table_LRU will become somewhat misleading;
that list contains tables that may be evicted, even though the
eviction policy no longer is least-recently-used but first-in-first-out.
(Note: Tables can never be evicted as long as locks exist on them or
the tables are in use by some thread.)
As demonstrated by the test perfschema.sxlock_func, there
will be less contention on dict_sys.latch, because some previous
use of exclusive latches will be replaced with shared latches.
fts_parse_sql_no_dict_lock(): Replaced with pars_sql().
fts_get_table_name_prefix(): Merged to fts_optimize_create().
dict_stats_update_transient_for_index(): Deduplicated some code.
ha_innobase::info_low(), dict_stats_stop_bg(): Use a combination
of dict_sys.latch and table->stats_mutex_lock() to cover the
changes of BG_STAT_SHOULD_QUIT, because the flag is being read
in dict_stats_update_persistent() while not holding dict_sys.latch.
row_discard_tablespace_for_mysql(): Protect stats_bg_flag by
exclusive dict_sys.latch, like most other code does.
row_quiesce_table_has_fts_index(): Remove unnecessary mutex
acquisition. FLUSH TABLES...FOR EXPORT is protected by MDL.
row_import::set_root_by_heuristic(): Remove unnecessary mutex
acquisition. ALTER TABLE...IMPORT TABLESPACE is protected by MDL.
row_ins_sec_index_entry_low(): Replace a call
to dict_set_corrupted_index_cache_only(). Reads of index->type
were not really protected by dict_sys.mutex, and writes
(flagging an index corrupted) should be extremely rare.
dict_stats_process_entry_from_defrag_pool(): Only freeze the dictionary,
do not lock it exclusively.
dict_stats_wait_bg_to_stop_using_table(), DICT_BG_YIELD: Remove trx.
We can simply invoke dict_sys.unlock() and dict_sys.lock() directly.
dict_acquire_mdl_shared()<trylock=false>: Assert that dict_sys.latch is
only held in shared more, not exclusive mode. Only acquire it in
exclusive mode if the table needs to be loaded to the cache.
dict_sys_t::acquire(): Remove. Relocating elements in dict_sys.table_LRU
would require holding an exclusive latch, which we want to avoid
for performance reasons.
dict_sys_t::allow_eviction(): Add the table first to dict_sys.table_LRU,
to compensate for the removal of dict_sys_t::acquire(). This function
is only invoked by INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS.
dict_table_open_on_id(), dict_table_open_on_name(): If dict_locked=false,
try to acquire dict_sys.latch in shared mode. Only acquire the latch in
exclusive mode if the table is not found in the cache.
Reviewed by: Thirunarayanan Balathandayuthapani
pars_info_bind_id(): Remove the parameter copy_name. It was always
being passed as constant TRUE or true. It turns out that copying
the string is completely unnecessary. In all calls except the one
in fts_get_select_columns_str() and fts_doc_fetch_by_doc_id(),
the parameter is being passed as a compile-time constant, and therefore
the pointer cannot become stale. In that special call, the string
that is being passed is allocated from the same memory heap that
pars_info_bind_id() would have been using.
pars_info_add_id(): Remove (unused declaration).
Many InnoDB data dictionary cache operations require that the
table name be copied so that it will be NUL terminated.
(For example, SYS_TABLES.NAME is not guaranteed to be NUL-terminated.)
dict_table_t::is_garbage_name(): Check if a name belongs to
the background drop table queue.
dict_check_if_system_table_exists(): Remove.
dict_sys_t::load_sys_tables(): Load the non-hard-coded system tables
SYS_FOREIGN, SYS_FOREIGN_COLS, SYS_VIRTUAL on startup.
dict_sys_t::create_or_check_sys_tables(): Replaces
dict_create_or_check_foreign_constraint_tables() and
dict_create_or_check_sys_virtual().
dict_sys_t::load_table(): Replaces dict_table_get_low()
and dict_load_table().
dict_sys_t::find_table(): Renamed from get_table().
dict_sys_t::sys_tables_exist(): Check whether all the non-hard-coded
tables SYS_FOREIGN, SYS_FOREIGN_COLS, SYS_VIRTUAL exist.
trx_t::has_stats_table_lock(): Moved to dict0stats.cc.
Some error messages will now report table names in the internal
databasename/tablename format, instead of `databasename`.`tablename`.
Before we create an InnoDB data file, we must have persistently
started a DDL transaction and written a record in SYS_INDEXES
as well as a FILE_CREATE record for creating the file.
In that way, if InnoDB is killed before the DDL transaction is
committed, the rollback will be able to delete the file in
dict_drop_index_tree().
dict_build_table_def_step(): Do not create the tablespace.
At this point, we have not written any log, not even for
inserting the SYS_TABLES record.
dict_create_sys_indexes_tuple(): Relax an assertion to tolerate
a missing tablespace before the first index has been created in
dict_create_index_step().
dict_build_index_def_step(): Relax the dict_table_open_on_name()
parameter, because no tablespace may be available yet.
tab_create_graph_create(), row_create_table_for_mysql(), tab_node_t:
Remove key_id, mode.
ind_create_graph_create(), row_create_index_for_mysql(), ind_node_t:
Add key_id, mode.
dict_create_index_space(): New function, to create the tablespace
during clustered index creation.
dict_create_index_step(): After the SYS_INDEXES record has been
written, invoke dict_create_index_space() to create the tablespace
if needed.
fil_ibd_create(): Before creating the file, persistently write a
FILE_CREATE record. This will also ensure that an incomplete DDL
transaction will be recovered. After creating the file, invoke
fsp_header_init().
SHOW ENGINE INNODB MUTEX functionality is completely removed,
as are the InnoDB latching order checks.
We will enforce innodb_fatal_semaphore_wait_threshold
only for dict_sys.mutex and lock_sys.mutex.
dict_sys_t::mutex_lock(): A single entry point for dict_sys.mutex.
lock_sys_t::mutex_lock(): A single entry point for lock_sys.mutex.
FIXME: srv_sys should be removed altogether; it is duplicating tpool
functionality.
fil_crypt_threads_init(): To prevent SAFE_MUTEX warnings, we must
not hold fil_system.mutex.
fil_close_all_files(): To prevent SAFE_MUTEX warnings for
fil_space_destroy_crypt_data(), we must not hold fil_system.mutex
while invoking fil_space_free_low() on a detached tablespace.
The -Wconversion in GCC seems to be stricter than in clang.
GCC at least since version 4.4.7 issues truncation warnings for
assignments to bitfields, while clang 10 appears to only issue
warnings when the sizes in bytes rounded to the nearest integer
powers of 2 are different.
Before GCC 10.0.0, -Wconversion required more casts and would not
allow some operations, such as x<<=1 or x+=1 on a data type that
is narrower than int.
GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining
about x|=y even when x and y are compatible types that are narrower
than int. Hence, we must rewrite some x|=y as
x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion.
In GCC 6 and later, the warning for assigning wider to bitfields
that are narrower than 8, 16, or 32 bits can be suppressed by
applying a bitwise & with the exact bitmask of the bitfield.
For older GCC, we must disable -Wconversion for GCC 4 or 5 in such
cases.
The bitwise negation operator appears to promote short integers
to a wider type, and hence we must add explicit truncation casts
around them. Microsoft Visual C does not allow a static_cast to
truncate a constant, such as static_cast<byte>(1) truncating int.
Hence, we will use the constructor-style cast byte(~1) for such cases.
This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0,
clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019)
on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).