According to the standard, the autoincrement column (i.e. *identity
column*) should be advanced each insert implicitly made by
UPDATE/DELETE ... FOR PORTION.
This is very unconvenient use in several notable cases. Concider a
WITHOUT OVERLAPS key with an autoinc column:
id int auto_increment, unique(id, p without overlaps)
An update or delete with FOR PORTION creates a sense that id will remain
unchanged in such case.
The standard's IDENTITY reminds MariaDB's AUTO_INCREMENT, however
the generation rules differ in many ways. For example, there's also a
notion autoincrement index, which is bound to the autoincrement field.
We will define our own generation rule for the PORTION OF operations
involving AUTO_INCREMENT:
* If an autoincrement index contains WITHOUT OVERLAPS specification, then
a new value should not be generated, otherwise it should.
Apart from WITHOUT OVERLAPS there is also another notable case, referred
by the reporter - a unique key that has an autoincrement column and a field
from the period specification:
id int auto_increment, unique(id, s), period for p(s, e)
for this case, no exception is made, and the autoincrementing rules will be
proceeded accordung to the standard (i.e. the value will be advanced on
implicit inserts).
Most things where wrong in the test suite.
The one thing that was a bug was that table_map_id was in some places
defined as ulong and in other places as ulonglong. On Linux 64 bit this
is not a problem as ulong == ulonglong, but on windows this caused failures.
Fixed by ensuring that all instances of table_map_id are ulonglong.
The MDEV-29693 conflict resolution is from Monty, as well as is
a bug fix where ANALYZE TABLE wrongly built histograms for
single-column PRIMARY KEY.
Also includes a fix for safe_malloc error reporting.
Other things:
- Copied main.log_slow from 10.4 to avoid mtr issue
Disabled test:
- spider/bugfix.mdev_27239 because we started to get
+Error 1429 Unable to connect to foreign data source: localhost
-Error 1158 Got an error reading communication packets
- main.delayed
- Bug#54332 Deadlock with two connections doing LOCK TABLE+INSERT DELAYED
This part is disabled for now as it fails randomly with different
warnings/errors (no corruption).
Problem:
Under terms of MDEV-27490, we'll update Unicode version used
to compare identifiers to 14.0.0. Unlike in the old Unicode version,
in the new version a string can grow during lower-case. We cannot
perform check_db_name() inplace any more.
Change summary:
- Allocate memory to store lower-cased identifiers in memory root
- Removing check_db_name() performing both in-place lower-casing and validation
at the same time. Splitting it into two separate stages:
* creating a memory-root lower-cased copy of an identifier
(using new MEM_ROOT functions and Query_arena wrapper methods)
* performing validation on a constant string
(using Lex_ident_fs methods)
Implementation details:
- Adding a mysys helper function to allocate lower-cased strings on MEM_ROOT:
lex_string_casedn_root()
and a Query_arena wrappers for it:
make_ident_casedn()
make_ident_opt_casedn()
- Adding a Query_arena method to perform both MEM_ROOT lower-casing and
database name validation at the same time:
to_ident_db_internal_with_error()
This method is very close to the old (pre-11.3) check_db_name(),
but performs lower-casing to a newly allocated MEM_ROOT
memory (instead of performing lower-casing the original string in-place).
- Adding a Table_ident method which additionally handles derived table names:
to_ident_db_internal_with_error()
- Removing the old check_db_name()
32 bit MariaDB crashed in innodb.innodb-16k and a few other tests.
Fixed by using correct sizeof() calls.
Histograms where not read if first read was without histograms.
There are two functions to extract a Field::val_str() value
as a LEX_STRING or LEX_CSTRING pointing to the data allocated on a MEM_ROOT:
char *get_field(MEM_ROOT *mem, Field *field);
bool get_field(MEM_ROOT *mem, Field *field, class String *res);
The first function requires strlen() calls to make a LEX_CSTRING/LEX_STRING.
The second function requires a redundant String buffer,
which is used only as a temporary proxy value pointing to a MEM_ROOT fragment
(and does not use any String dynamic allocation methods).
This patch add a native way to extract a Field::val_str() value
as a LEX_STRING or LEX_CSTRING pointing to a MEM_ROOT fragment.
It helps to remove redundant strlen() calls and redundant String buffers.
- Adding a new method:
LEX_STRING Field::val_lex_string_strmake(MEM_ROOT *mem);
- Reusing the new method Field::val_lex_string_strmake() in;
bool get_field(MEM_ROOT *mem, Field *field, String *res);
Also, moving it from table.cc to a static function in sql_help.cc.
It is used in sql_help.cc only, and we don't want it to be reused
in other parts of the code (to avoid redundant String buffers).
- Reusing the new method Field::val_lex_string_strmake() in this function:
char *get_field(MEM_ROOT *mem, Field *field);
- Replacing get_field() to Field::val_lex_string_strmake() in these files:
sql_plugin.cc (redundant String buffers were removed)
sql_udf.cc (redundant strlen() calls were removed)
Note, this function:
char *get_field(MEM_ROOT *mem, Field *field);
is still used in a number of files:
event_data_objects.cc
event_db_repository.cc
sql_acl.cc
sql_servers.cc
These remaining calls will be removed by separate patches,
and get_field() will be removed after that.
- Changing the global function ok_for_lower_case_names()
into a method in class Lex_ident_fs.
- Changing a few functions/methods to get the database name
as a "const LEX_CSTRING" instead of a "const char *".
All these functions/methods use ok_for_lower_case_names()
inside. This change helps to avoid new strlen() calls, and also
removes a few old strlen() calls.
This commits enables reloading of engine-independent statistics
without flushing the table from table definition cache.
This is achieved by allowing multiple version of the
TABLE_STATISTICS_CB object and having independent pointers to it in
TABLE and TABLE_SHARE. The TABLE_STATISTICS_CB object have reference
pointers and are freed when no one is pointing to it anymore.
TABLE's TABLE_STATISTICS_CB pointer is updated to use the
TABLE_SHARE's pointer when read_statistics_for_tables() is called at
the beginning of a query.
Main changes:
- read_statistics_for_table() will allocate an new TABLE_STATISTICS_CB
object.
- All get_stat_values() functions has a new parameter that tells
where collected data should be stored. get_stat_values() are not
using the table_field object anymore to store data.
- All get_stat_values() functions returns 1 if they found any
data in the statistics tables.
Other things:
- Fixed INSERT DELAYED to not read statistics tables.
- Removed Statistics_state from TABLE_STATISTICS_CB as this is not
needed anymore as wer are not changing TABLE_SHARE->stats_cb while
calculating or loading statistics.
- Store values used with store_from_statistical_minmax_field() in
TABLE_STATISTICS_CB::mem_root. This allowed me to remove the function
delete_stat_values_for_table_share().
- Field_blob::store_from_statistical_minmax_field() is implemented
but is not normally used as we do not yet support EIS statistics
for blobs. For example Field_blob::update_min() and
Field_blob::update_max() are not implemented.
Note that the function can be called if there is an concurrent
"ALTER TABLE MODIFY field BLOB" running because of a bug in
ALTER TABLE where it deletes entries from column_stats
before it has an exclusive lock on the table.
- Use result of field->val_str(&val) as a pointer to the result
instead of val (safetly fix).
- Allocate memory for collected statistics in THD::mem_root, not in
in TABLE::mem_root. This could cause the TABLE object to grow if a
ANALYZE TABLE was run many times on the same table.
This was done in allocate_statistics_for_table(),
create_min_max_statistical_fields_for_table() and
create_min_max_statistical_fields_for_table_share().
- Store in TABLE_STATISTICS_CB::stats_available which statistics was
found in the statistics tables.
- Removed index_table from class Index_prefix_calc as it was not used.
- Added TABLE_SHARE::LOCK_statistics to ensure we don't load EITS
in parallel. First thread will load it, others will reuse the
loaded data.
- Eliminate read_histograms_for_table(). The loading happens within
read_statistics_for_tables() if histograms are needed.
One downside is that if we have read statistics without histograms
before and someone requires histograms, we have to read all statistics
again (once) from the statistics tables.
A smaller downside is the need to call alloc_root() for each
individual histogram. Before we could allocate all the space for
histograms with a single alloc_root.
- Fixed bug in MyISAM and Aria where they did not properly notice
that table had changed after analyze table. This was not a problem
before this patch as then the MyISAM and Aria tables where flushed
as part of ANALYZE table which did hide this issue.
- Fixed a bug in ANALYZE table where table->records could be seen as 0
in collect_statistics_for_table(). The effect of this unlikely bug
was that a full table scan could be done even if
analyze_sample_percentage was not set to 1.
- Changed multiple mallocs in a row to use multi_alloc_root().
- Added a mutex protection in update_statistics_for_table() to ensure
that several tables are not updating the statistics at the same time.
Some of the changes in sql_statistics.cc are based on a patch from
Oleg Smirnov <olernov@gmail.com>
Co-authored-by: Oleg Smirnov <olernov@gmail.com>
Co-authored-by: Vicentiu Ciorbaru <cvicentiu@gmail.com>
Reviewer: Sergei Petrunia <sergey@mariadb.com>
When column is changed to autoinc, ALTER TABLE may update zero/NULL values,
if NO_AUTO_VALUE_ON_ZERO mode is not enabled.
Forbid this for LOCK=NONE for the unreliable cases.
The cases are described in online_alter_check_autoinc.
* Log rows in online_alter_binlog.
* Table online data is replicated within dedicated binlog file
* Cached data is written on commit.
* Versioning is fully supported.
* Works both wit and without binlog enabled.
* For now savepoints setup is forbidden while ONLINE ALTER goes on.
Extra support is required. We can simply log the SAVEPOINT query events
and replicate them together with row events. But it's not implemented
for now.
* Cache flipping:
We want to care for the possible bottleneck in the online alter binlog
reading/writing in advance.
IO_CACHE does not provide anything better that sequential access,
besides, only a single write is mutex-protected, which is not suitable,
since we should write a transaction atomically.
To solve this, a special layer on top Event_log is implemented.
There are two IO_CACHE files underneath: one for reading, and one for
writing.
Once the read cache is empty, an exclusive lock is acquired (we can wait
for a currently active transaction finish writing), and flip() is emitted,
i.e. the write cache is reopened for read, and the read cache is emptied,
and reopened for writing.
This reminds a buffer flip that happens in accelerated graphics
(DirectX/OpenGL/etc).
Cache_flip_event_log is considered non-blocking for a single reader and a
single writer in this sense, with the only lock held by reader during flip.
An alternative approach by implementing a fair concurrent circular buffer
is described in MDEV-24676.
* Cache managers:
We have two cache sinks: statement and transactional.
It is important that the changes are first cached per-statement and
per-transaction.
If a statement fails, then only statement data is rolled back. The
transaction moves along, however.
Turns out, there's no guarantee that TABLE well persist in
thd->open_tables to the transaction commit moment.
If an error occurs, tables from statement are purged.
Therefore, we can't store te caches in TABLE. Ideally, it should be
handlerton, but we cut the corner and store it in THD in a list.