The Count_handler (derived from Internal_error_handler) used in
Type_handler_datetime_common::convert_item_for_comparison()
suppressed all error codes. This caused a DBUG_ASSERT(thd->is_error())
in Field::sp_prepare_and_store_item() when the error happened
while evaluating a subselect in a scenario like this:
CREATE FUNCTION f() RETURNS INT DETERMINISTIC RETURN (SELECT a FROM t);
CREATE TABLE t (c TIMESTAMP);
SELECT * FROM t WHERE c=f();
Notice there is no such column 'a' in in the table 't'.
Fix:
Handle only DATETIME->TIMESTAMP conversion related errors in Count_handler:
- ER_TRUNCATED_WRONG_VALUE
- ER_DATETIME_FUNCTION_OVERFLOW
thus let other error kinds be processed in their usual way.
The reported scenario now returns this (expected) error:
ERROR 1054 (42S22): Unknown column 'a' in 'SELECT'
Partial commit of the greater MDEV-34348 scope.
MDEV-34348: MariaDB is violating clang-16 -Wcast-function-type-strict
Reviewed By:
============
Marko Mäkelä <marko.makela@mariadb.com>
Partial commit of the greater MDEV-34348 scope.
MDEV-34348: MariaDB is violating clang-16 -Wcast-function-type-strict
The functions queue_compare, qsort2_cmp, and qsort_cmp2
all had similar interfaces, and were used interchangable
and unsafely cast to one another.
This patch consolidates the functions all into the
qsort_cmp2 interface.
Reviewed By:
============
Marko Mäkelä <marko.makela@mariadb.com>
LEAST() and GREATEST() erroneously calcucalted the result as signed
for BIGINT UNSIGNED arguments.
Adding a new method for unsigned arguments:
Item_func_min_max::val_uint_native()
Search conditions were evaluated using val_int(), which was wrong.
Fixing the code to use val_bool() instead.
Details:
- Adding a new item_base_t::IS_COND flag which marks Items used
as <search condition> in WHERE, HAVING, JOIN ON, CASE WHEN clauses.
The flag is at the parse time.
These expressions must be evaluated using val_bool() rather than val_int().
Note, the optimizer creates more Items which are used as search conditions.
Most of these items are not marked with IS_COND yet. This is OK for now,
but eventually these Items can also be fixed to have the flag.
- Adding a method Item::is_cond() which tests if the Item has the IS_COND flag.
- Implementing Item_cache_bool. It evaluates the cached expression using
val_bool() rather than val_int().
Overriding Type_handler_bool::Item_get_cache() to create Item_cache_bool.
- Implementing Item::save_bool_in_field(). It uses val_bool() rather than
val_int() to evaluate the expression.
- Implementing Type_handler_bool::Item_save_in_field()
using Item::save_bool_in_field().
- Fixing all Item_bool_func descendants to implement a virtual val_bool()
rather than a virtual val_int().
- To find places where val_int() should be fixed to val_bool(), a few
DBUG_ASSERT(!is_cond()) where added into val_int() implementations
of selected (most frequent) classes:
Item_field
Item_str_func
Item_datefunc
Item_timefunc
Item_datetimefunc
Item_cache_bool
Item_bool_func
Item_func_hybrid_field_type
Item_basic_constant descendants
- Fixing all places where DBUG_ASSERT() happened during an "mtr" run
to use val_bool() instead of val_int().
The code erroneously called sec_since_epoch() for dates with zeros,
e.g. '2024-00-01'.
Fixi: adding a test that the date does not have zeros before
calling TIME_to_native().
A mixture of a multi-byte *TEXT column and a short binary column
produced a too large column.
For example, COALESCE(tinytext_utf8mb4, short_varbinary)
produced a BLOB column instead of an expected TINYBLOB.
- Adding a virtual method Type_all_attributes::character_octet_length(),
returning max_length by default.
- Overriding Item_field::character_octet_length() to extract
the octet length from the underlying Field.
- Overriding Item_ref::character_octet_length() to extract
the octet length from the references Item (e.g. as VIEW fields).
- Fixing Type_numeric_attributes::find_max_octet_length() to
take the octet length using the new method character_octet_length()
instead of accessing max_length directly.
Fixing applying the COLLATE clause to a parameter caused an error error:
COLLATION '...' is not valid for CHARACTER SET 'binary'
Fix:
- Changing the collation derivation for a non-prepared Item_param
to DERIVATION_IGNORABLE.
- Allowing to apply any COLLATE clause to expressions with DERIVATION_IGNORABLE.
This includes:
1. A non-prepared Item_param
2. An explicit NULL
3. Expressions derived from #1 and #2
For example:
SELECT ? COLLATE utf8mb_unicode_ci;
SELECT NULL COLLATE utf8mb_unicode_ci;
SELECT CONCAT(?) COLLATE utf8mb_unicode_ci;
SELECT CONCAT(NULL) COLLATE utf8mb_unicode_ci
- Additional change: preserving the collation of an expression when
the expression gets assigned to a PS parameter and evaluates to SQL NULL.
Before this change, the collation of the parameter was erroneously set
to &my_charset_binary.
- Additional change: removing the multiplication to mbmaxlen from the
fix_char_length_ulonglong() argument, because the multiplication already
happens inside fix_char_length_ulonglong().
This fixes a too large column size created for a COLLATE clause.
The optimization code replacing DATETIME comparison to TIMESTAMP comparison
in conditions like:
- WHERE timestamp_col=const_expr
- WHERE const_expr IN (SELECT timestamp_column FROM t1)
worked as follows:
- Install an internal condition handler (suppressing and counting warnings).
- Convert const_expr from its data type to TIMESTAMP
- Check the warning count collected by the internal condition handler:
* If any warnings happened during the constant conversion,
then continue with DATETIME comparison.
* Otherwise, go to the next stage of switching to TIMESTAMP comparison.
This scenario did not take into account that in some cases warnings
are escalated to errors. Errors were not caught by the internal handler,
so Type_handler_datetime_common::convert_item_for_comparison()
returned with an SQL error in the diagnostics area.
The calling code did not expect this.
Fixing the code to suppress and count both errors and warnings, to make sure
Type_handler_datetime_common::convert_item_for_comparison() returns without
adding any errors to DA if the conversion to TIMESTAMP fails and it decides
to go with DATETIME comparison.
Some fixes related to commit f838b2d799 and
Rows_log_event::do_apply_event() and Update_rows_log_event::do_exec_row()
for system-versioned tables were provided by Nikita Malyavin.
This was required by test versioning.rpl,trx_id,row.
Problem:
REPAIR TABLE executed for a pre-MDEV-29959 table (with the old UUID format)
updated the server version in the FRM file without rewriting the data,
so it created a new FRM for old UUIDs. After that MariaDB could not
read UUIDs correctly.
Fix:
- Adding a new virtual method in class Type_handler:
virtual bool type_handler_for_implicit_upgrade() const;
* For the up-to-date data types it returns "this".
* For the data types which need to be implicitly upgraded
during REPAIR TABLE or ALTER TABLE, it returns a pointer
to a new replacement data type handler.
Old VARCHAR and old UUID type handlers override this method.
See more comments below.
- Changing the semantics of the method
Type_handler::Column_definition_implicit_upgrade(Column_definition *c)
to the opposite, so now:
* c->type_handler() references the old data type (to upgrade from)
* "this" references the new data type (to upgrade to).
Before this change Column_definition_implicit_upgrade() was supposed
to be called with the old data type handler (to upgrade from).
Renaming the method to Column_definition_implicit_upgrade_to_this(),
to avoid automatic merges in this method.
Reflecting this change in Create_field::upgrade_data_types().
- Replacing the hard-coded data type tests inside handler::check_old_types()
to a call for the new virtual method
Type_handler::type_handler_for_implicit_upgrade()
- Overriding Type_handler_fbt::type_handler_for_implicit_upgrade()
to call a new method FbtImpl::type_handler_for_implicit_upgrade().
Reasoning:
Type_handler_fbt is a template, so it has access only to "this".
So in case of UUID data types, the type handler for old UUID
knows nothing about the type handler of new UUID inside sql_type_fixedbin.h.
So let's have Type_handler_fbt delegate type_handler_for_implicit_upgrade()
to its Type_collection, which knows both new UUID and old UUID.
- Adding Type_collection_uuid::type_handler_for_implicit_upgrade().
It returns a pointer to the new UUID type handler.
- Overriding Type_handler_var_string::type_handler_for_implicit_upgrade()
to return a pointer to type_handler_varchar (true VARCHAR).
- Cleanup: these two methods:
handler::check_old_types()
handler::ha_check_for_upgrade()
were always called consequently.
So moving the call for check_old_types() inside ha_check_for_upgrade(),
and making check_old_types() private.
- Cleanup: removing the "bool varchar" parameter from fill_alter_inplace_info(),
as its not used any more.
Functions extracting non-negative datetime components:
- YEAR(dt), EXTRACT(YEAR FROM dt)
- QUARTER(td), EXTRACT(QUARTER FROM dt)
- MONTH(dt), EXTRACT(MONTH FROM dt)
- WEEK(dt), EXTRACT(WEEK FROM dt)
- HOUR(dt),
- MINUTE(dt),
- SECOND(dt),
- MICROSECOND(dt),
- DAYOFYEAR(dt)
- EXTRACT(YEAR_MONTH FROM dt)
did not set their max_length properly, so in the DECIMAL
context they created a too small DECIMAL column, which
led to the 'Out of range value' error.
The problem is that most of these functions historically
returned the signed INT data type.
There were two simple ways to fix these functions:
1. Add +1 to max_length.
But this would also change their size in the string context
and create too long VARCHAR columns, with +1 excessive size.
2. Preserve max_length, but change the data type from INT to INT UNSIGNED.
But this would break backward compatibility.
Also, using UNSIGNED is generally not desirable,
it's better to stay with signed when possible.
This fix implements another solution, which it makes all these functions
work well in all contexts: int, decimal, string.
Fix details:
- Adding a new special class Type_handler_long_ge0 - the data type
handler for expressions which:
* should look like normal signed INT
* but which known not to return negative values
Expressions handled by Type_handler_long_ge0 store in Item::max_length
only the number of digits, without adding +1 for the sign.
- Fixing Item_extract to use Type_handler_long_ge0
for non-negative datetime components:
YEAR, YEAR_MONTH, QUARTER, MONTH, WEEK
- Adding a new abstract class Item_long_ge0_func, for functions
returning non-negative datetime components.
Item_long_ge0_func uses Type_handler_long_ge0 as the type handler.
The class hierarchy now looks as follows:
Item_long_ge0_func
Item_long_func_date_field
Item_func_to_days
Item_func_dayofmonth
Item_func_dayofyear
Item_func_quarter
Item_func_year
Item_long_func_time_field
Item_func_hour
Item_func_minute
Item_func_second
Item_func_microsecond
- Cleanup: EXTRACT(QUARTER FROM dt) created an excessive VARCHAR column
in string context. Changing its length from 2 to 1.
Changing the way how a the following conditions are evaluated:
WHERE timestamp_column=datetime_const_expr
(for all comparison operators: =, <=>, <, >, <=, >=, <> and for NULLIF)
Before the change it was always performed as DATETIME.
That was not efficient, as involved per-row TIMESTAMP->DATETIME conversion
for timestamp_column. For example, in case of the SYSTEM time zone
it involved a localtime_r() call, which is known to be slow.
After the change it's performed as TIMESTAMP in many cases.
This allows to avoid per-row conversion, as it works the other way around:
datetime_const_expr is converted to TIMESTAMP once before the execution stage.
Note, datetime_const_expr must be inside monotone continuous periods of
the current time zone, i.e. not near these anomalies:
- DST changes (spring forward, fall back)
- leap seconds
Fix old_mode flags conflict between OLD_MODE_NO_NULL_COLLATION_IDS
and OLD_MODE_LOCK_ALTER_TABLE_COPY.
Both flags used to be 1 << 6, now OLD_MODE_LOCK_ALTER_TABLE_COPY changed
to be 1 << 7
During the 10.5->10.6 merge please use the 10.6 code on conflicts.
This is the 10.5 version of the patch (a backport of the 10.6 version).
Unlike 10.6 version, it makes changes in plugin/type_inet/sql_type_inet.*
rather than in sql/sql_type_fixedbin.h
Item_bool_rowready_func2, Item_func_between, Item_func_in
did not check if a not-NULL argument of an arbitrary data type
can produce a NULL value on conversion to INET6.
This caused a crash on DBUG_ASSERT() in conversion failures,
because the function returned SQL NULL for something that
has Item::maybe_null() equal to false.
Adding setting NULL-ability in such cases.
Details:
- Removing the code in Item_func::setup_args_and_comparator()
performing character set aggregation with optional narrowing.
This aggregation is done inside Arg_comparator::set_cmp_func_string().
So this code was redundant
- Removing Item_func::setup_args_and_comparator() as it git simplified to
just to two lines:
convert_const_compared_to_int_field(thd);
return cmp->set_cmp_func(thd, this, &args[0], &args[1], true);
Using these lines directly in:
- Item_bool_rowready_func2::fix_length_and_dec()
- Item_func_nullif::fix_length_and_dec()
- Adding a new virtual method:
- Type_handler::Item_bool_rowready_func2_fix_length_and_dec().
- Adding tests detecting if the data type conversion can return SQL NULL into
the following methods of Type_handler_inet6:
- Item_bool_rowready_func2_fix_length_and_dec
- Item_func_between_fix_length_and_dec
- Item_func_in_fix_comparator_compatible_types
This is the 10.6 version of the patch.
Item_bool_rowready_func2, Item_func_between, Item_func_in
did not check if a not-NULL argument of an arbitrary data type
can produce a NULL value on conversion to INET6.
This caused a crash on DBUG_ASSERT() in conversion failures,
because the function returned SQL NULL for something that
has Item::maybe_null() equal to false.
Adding setting NULL-ability in such cases.
Details:
- Removing the code in Item_func::setup_args_and_comparator()
performing character set aggregation with optional narrowing.
This aggregation is done inside Arg_comparator::set_cmp_func_string().
So this code was redundant
- Removing Item_func::setup_args_and_comparator() as it git simplified to
just to two lines:
convert_const_compared_to_int_field(thd);
return cmp->set_cmp_func(thd, this, &args[0], &args[1], true);
Using these lines directly in:
- Item_bool_rowready_func2::fix_length_and_dec()
- Item_func_nullif::fix_length_and_dec()
- Adding a new virtual method:
- Type_handler::Item_bool_rowready_func2_fix_length_and_dec().
- Adding tests detecting if the data type conversion can return SQL NULL into
the following methods of Type_handler_fbt:
- Item_bool_rowready_func2_fix_length_and_dec
- Item_func_between_fix_length_and_dec
- Item_func_in_fix_comparator_compatible_types