Get rid of need of matherialization for usual INSERT (cache results in
Item_cache* if needed)
- subqueries in VALUE do not see new records in the table we are
inserting to
- subqueries in RETIRNING prohibited to use the table we are inserting to
Problem:
========
- After commit cc8eefb0dc (MDEV-33087),
InnoDB does use bulk insert operation for ALTER TABLE.. ALGORITHM=COPY
and CREATE TABLE..SELECT as well. InnoDB fails to clear the bulk
buffer when it encounters error during CREATE..SELECT. Problem
is that while transaction cleanup, InnoDB fails to identify
the bulk insert for DDL operation.
Fix:
====
- Represent bulk_insert in trx by 2 bits. By doing that, InnoDB
can distinguish between TRX_DML_BULK, TRX_DDL_BULK. During DDL,
set bulk insert value for transaction to TRX_DDL_BULK.
- Introduce a parameter HA_EXTRA_ABORT_ALTER_COPY which rollbacks
only TRX_DDL_BULK transaction.
- bulk_insert_apply() happens for TRX_DDL_BULK transaction happens
only during HA_EXTRA_END_ALTER_COPY extra() call.
MDEV-35499 Errored-out CREATE-or-REPLACE-SELECT does not log DROP table into binlog
MDEV-35502 Failed at ROW-format binlogging CREATE-TABLE-SELECT should
not generate Incident event
When a CREATE TABLE .. SELECT errors while inserting data, a user
would expect that all changes are rolled back
and the table would not exist after executing the query.
However CREATE-TABLE-SELECT can face an error near the end of its execution
select_create::send_eof() so that the error was never checked which
led to various assert inside binlogging path that should not be
attended at all.
Specifically when binlog_commit() of ha_commit_one_phase() that
CREATE-TABLE-SELECT employs errored out because of a limited cache size
(binlog_commit may try writing to a transactional cache) the cache
was not flushed to binlog. The missed error check allowed further
execution down to trans_commit_implicit() in whose stack
DBUG_ASSERT(!(entry->using_trx_cache && !mngr->trx_cache.empty() &&
mngr->get_binlog_cache_log(TRUE)->error));
fired. In a non-debug build that table remains created/populated
inconsistently with binlog.
The fixes need and install the error checking in select_create::send_eof().
That prevents from any further execution when ha_commit_one_phase() fails
for any reason (typically due to binlog_commit()).
This commit also covers CREATE-or-REPLACE-SELECT that additionally had
a specific issue in that DROP TABLE was not logged the binary log, MDEV-35499.
See changes select_create::abort_result_set().
The current commit also corrects an unnecessary Incident event
logging when CREATE-TABLE-SELECT encounters a binloging issue, MDEV-35502.
The Incident was actually only harmful in this case as the table was
never going to be created, therefore replicated, in such a case.
In "normal" cases when the SELECT phase errors due to binlogging, an
internal incident flag gets reset inside select_create::abort_result_set().
A hunk in select_insert::prepare_eof() addresses a specific kind of
this issue that deals with incorrect computation of the binlog cache type.
Because of that in the OLD version execution was allowed to proceed along
ha_commit_trans()..binlog_commit() while a Pending event was not
flushed to the transactional cache. That might lead to the unnecessary
binlogged Incident despite the select_create::abort_result_set()
measures. However now with the corrected cache type any binlogging error
to flush the Pending event is covered according to the normal case.
non-transaction table, updates to the non-transactional table
NOTE the commit contains few tests overlapping with unfixed yet MDEV-36027.
Thanks to Brandon Nesterenko and Kristian Nielsen for thorough review,
and Kristian additionally for ideas to simplify the patch and some
code contribution.
disable the assert.
also, use the same check for check_that_all_fields_are_given_values()
as it's used in not_null_fields_have_null_values() - to avoid
issuing the same warning twice.
Problem was that in case of INSERT DELAYED thd->query() is
freed before we call trans_rollback where WSREP_DEBUG
could access thd->query() in wsrep_thd_query().
Fix is to reset thd->query() to NULL in delayed_insert
destructor after it is freed. There is already
null guard at wsrep_thd_query().
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
it's incorrect to zero out table->triggers->extra_null_bitmap
before a statement, because if insert uses an explicit field list
and omits a field that has no default value, the field should
get NULL implicitly. So extra_null_bitmap should have 1s for all
fields that have no defaults
* create extra_null_bitmap_init and initialize it as above
* copy extra_null_bitmap_init to extra_null_bitmap for inserts
* still zero out extra_null_bitmap for updates/deletes where
all fields definitely have a value
* make not_null_fields_have_null_values() to send
ER_NO_DEFAULT_FOR_FIELD for fields with no default and no value,
otherwise creation of a trigger with an empty body would change the
error message
system versioned table
For versioned table REPLACE first tries to insert a row, if it gets
duplicate key error and optimization is possible it does UPDATE +
INSERT history. If optimization is not possible it goes normal branch
for UPDATE to history and repeats the cycle of INSERT.
The failure was in normal branch when we tried UPDATE to history but
such history already exists from previous cycles. There is no such
failures in optimized branch because vers_insert_history_row() already
ignores duplicates.
The fix ignores duplicate errors for UPDATE to history and does DELETE
instead.
DELAYED with virtual columns
Segfault was cause by two different copies of same Field instance in
prepared delayed insert. One was made by
Delayed_insert::get_local_table() (see make_new_field()). That copy
went through parse_vcol_defs() and received new vcol_info->expr.
Another one was made by copy_keys_from_share() by this code:
/*
We are using only a prefix of the column as a key:
Create a new field for the key part that matches the index
*/
field= key_part->field=field->make_new_field(root, outparam, 0);
field->field_length= key_part->length;
So, key_part and table got different objects of same field and the
crash was because key_part->field->vcol_info->expr is NULL.
The fix does update_keypart_vcol_info() to update vcol_info->expr in
key_part->field.
Cleanup: memdup_vcol() is static inline instead of macro + check OOM.
The problems were that:
1) resources was freed "asimetric" normal execution in send_eof,
in case of error in destructor.
2) destructor was not called in case of SP for result objects.
(so if the last SP execution ended with error resorces was not
freeded on reinit before execution (cleanup() called before next
execution) and destructor also was not called due to lack of
delete call for the object)
Result cleanup() renamed to reset_for_next_ps_execution() to better
reflect function().
All result method revised and freeing resources made "symetric".
Destructor of result object called for SP.
Added skipped invalidation in case of error in insert.
Removed misleading naming of reset(thd) (could be mixed with
with reset()).
This problem occured for statements like `INSERT INTO t1 SELECT 1`,
which do not have tables in the SELECT part. In such scenarios
SELECT_LEX::insert_tables was not properly set at `setup_tables()`,
and this led to either incorrect execution or a crash
Reviewer: Oleksandr Byelkin <sanja@mariadb.com>
This bug has the same nature as the issues
MDEV-34718: Trigger doesn't work correctly with bulk update
MDEV-24411: Trigger doesn't work correctly with bulk insert
To fix the issue covering all use cases, resetting the thd->bulk_param
temporary to the value nullptr before invoking triggers and restoring
its original value on finishing execution of a trigger is moved to the method
Table_triggers_list::process_triggers
that be invoked ultimately for any kind of triggers.
The problem was that when using clang + asan, we do not get a correct value
for the thread stack as some local variables are not allocated at the
normal stack.
It looks like that for example clang 18.1.3, when compiling with
-O2 -fsanitize=addressan it puts local variables and things allocated by
alloca() in other areas than on the stack.
The following code shows the issue
Thread 6 "mariadbd" hit Breakpoint 3, do_handle_one_connection
(connect=0x5080000027b8,
put_in_cache=<optimized out>) at sql/sql_connect.cc:1399
THD *thd;
1399 thd->thread_stack= (char*) &thd;
(gdb) p &thd
(THD **) 0x7fffedee7060
(gdb) p $sp
(void *) 0x7fffef4e7bc0
The address of thd is 24M away from the stack pointer
(gdb) info reg
...
rsp 0x7fffef4e7bc0 0x7fffef4e7bc0
...
r13 0x7fffedee7060 140737185214560
r13 is pointing to the address of the thd. Probably some kind of
"local stack" used by the sanitizer
I have verified this with gdb on a recursive call that calls alloca()
in a loop. In this case all objects was stored in a local heap,
not on the stack.
To solve this issue in a portable way, I have added two functions:
my_get_stack_pointer() returns the address of the current stack pointer.
The code is using asm instructions for intel 32/64 bit, powerpc,
arm 32/64 bit and sparc 32/64 bit.
Supported compilers are gcc, clang and MSVC.
For MSVC 64 bit we are using _AddressOfReturnAddress()
As a fallback for other compilers/arch we use the address of a local
variable.
my_get_stack_bounds() that will return the address of the base stack
and stack size using pthread_attr_getstack() or NtCurrentTed() with
fallback to using the address of a local variable and user provided
stack size.
Server changes are:
- Moving setting of thread_stack to THD::store_globals() using
my_get_stack_bounds().
- Removing setting of thd->thread_stack, except in functions that
allocates a lot on the stack before calling store_globals(). When
using estimates for stack start, we reduce stack_size with
MY_STACK_SAFE_MARGIN (8192) to take into account the stack used
before calling store_globals().
I also added a unittest, stack_allocation-t, to verify the new code.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Field_blob::store() has special code for GROUP_CONCAT temporary table
(to store blob values in Blob_mem_storage - this prevents them
from being freed/overwritten when a next row is read).
Field_geom and Field_blob_compressed inherit from Field_blob but they
have their own ::store() method without this special Blob_mem_storage
support.
Considering that non-grouping CONCAT() of such fields converts
them to plain BLOB, let's do the same for GROUP_CONCAT. To do it,
Item_func_group_concat::setup will signal that it's creating
a temporary table for GROUP_CONCAT, and Field_blog::make_new_field()
override will create base Field_blob when under group concat.
Hash index is vcol-based wrapper (MDEV-371). row_end is added to
unique index. So when row_end is updated unique hash index must be
recalculated via vcol_update_fields(). DELETE did not update virtual
fields, so DELETE HISTORY was getting wrong hash value.
The fix does update_virtual_fields() on vers_update_end() so in every
case row_end is updated virtual fields are updated as well.
work consistently on replication
Row-based replication does not execute CREATE .. SELECT but instead
CREATE TABLE. CREATE .. SELECT creates implict system fields on
unusual place: in-between declared fields and select fields. That was
done because select_field_pos logic requires select fields go last in
create_list.
So, CREATE .. SELECT on master and CREATE TABLE on slave create system
fields on different positions and replication gets field mismatch.
To fix this we've changed CREATE .. SELECT to create implicit system
fields on usual place in the end and updated select_field_pos for
handling this case.
my_b_encr_write(): Initialize also block_length, and at the same time
last_block_length, so that all 128 bits can be initialized with fewer
writes. This fixes an error that was caught in the test
encryption.tempfiles_encrypted.
test_my_safe_print_str(): Skip a test that would attempt to
display uninitialized data in the test unit.stacktrace.
Previously, our CI did not build unit tests with MemorySanitizer.
handle_delayed_insert(): Remove a redundant call to pthread_exit(0),
which would for some reason cause MemorySanitizer in clang-19 to
report a stack overflow in a RelWithDebInfo build. This fixes a
failure of several tests.
Reviewed by: Vladislav Vaintroub
The memory leak happened on second execution of a prepared statement
that runs UPDATE statement with correlated subquery in right hand side of
the SET clause. In this case, invocation of the method
table->stat_records()
could return the zero value that results in going into the 'if' branch
that handles impossible where condition. The issue is that this condition
branch missed saving of leaf tables that has to be performed as first
condition optimization activity. Later the PS statement memory root
is marked as read only on finishing first time execution of the prepared
statement. Next time the same statement is executed it hits the assertion
on attempt to allocate a memory on the PS memory root marked as read only.
This memory allocation takes place by the sequence of the following
invocations:
Prepared_statement::execute
mysql_execute_command
Sql_cmd_dml::execute
Sql_cmd_update::execute_inner
Sql_cmd_update::update_single_table
st_select_lex::save_leaf_tables
List<TABLE_LIST>::push_back
To fix the issue, add the flag SELECT_LEX::leaf_tables_saved to control
whether the method SELECT_LEX::save_leaf_tables() has to be called or
it has been already invoked and no more invocation required.
Similar issue could take place on running the DELETE statement with
the LIMIT clause in PS/SP mode. The reason of memory leak is the same as for
UPDATE case and be fixed in the same way.
Running an UPDATE statement in PS mode and having positional
parameter(s) bound with an array of actual values (that is
prepared to be run in bulk mode) results in incorrect behaviour
in presence of on update trigger that also executes an UPDATE
statement. The same is true for handling a DELETE statement in
presence of on delete trigger. Typically, the visible effect of
such incorrect behaviour is expressed in a wrong number of
updated/deleted rows of a target table. Additionally, in case UPDATE
statement, a number of modified rows and a state message returned
by a statement contains wrong information about a number of modified rows.
The reason for incorrect number of updated/deleted rows is that
a data structure used for binding positional argument with its
actual values is stored in THD (this is thd->bulk_param) and reused
on processing every INSERT/UPDATE/DELETE statement. It leads to
consuming actual values bound with top-level UPDATE/DELETE statement
by other DML statements used by triggers' body.
To fix the issue, reset the thd->bulk_param temporary to the value
nullptr before invoking triggers and restore its value on finishing
its execution.
The second part of the problem relating with wrong value of affected
rows reported by Connector/C API is caused by the fact that diagnostics
area is reused by an original DML statement and a statement invoked
by a trigger. This fact should be take into account on finalizing a
state of diagnostics area on completion running of a statement.
Important remark: in case the macros DBUG_OFF is on, call of the method
Diagnostics_area::reset_diagnostics_area()
results in reset of the data members
m_affected_rows, m_statement_warn_count.
Values of these data members of the class Diagnostics_area are used on
sending OK and EOF messages. In case DML statement is executed in PS bulk
mode such resetting results in sending wrong result values to a client
for affected rows in case the DML statement fires a triggers. So, reset
these data members only in case the current statement being processed
is not run in bulk mode.