A subquery in form "(SELECT not_null_value LIMIT 1 OFFSET 1)" will
produce no rows which will translate into scalar SQL NULL value.
The code in Item_singlerow_subselect::fix_length_and_dec() failed to
take the LIMIT/OFFSET clause into account and used to set
item_subselect->maybe_null=0, despite that SQL NULL will be produced.
If such subselect was used in ORDER BY, this would cause a crash in
filesort() code when it would get a NULL value for a not-nullable item.
also made subselect_engine::no_tables() const function.
The code inside Item_subselect::fix_fields() could fail to check
that left expression had an Item_row, like this:
(('x', 1.0) ,1) IN (SELECT 'x', 1.23 FROM ... UNION ...)
In order to hit the failure, the first SELECT of the subquery had
to be a degenerate no-tables select. In this case, execution will
not enter into Item_in_subselect::create_row_in_to_exists_cond()
and will not check if left_expr is composed of scalars.
But the subquery is a UNION so as a whole it is not degenerate.
We try to create an expression cache for the subquery.
We create a temp.table from left_expr columns. No field is created
for the Item_row. Then, we crash when trying to add an index over a
non-existent field.
Fixed by moving the left_expr cardinality check to a point in
check_and_do_in_subquery_rewrites() which gets executed for all
cases.
It's better to make the check early so we don't have to care about
subquery rewrite code hitting Item_row in left_expr.
Before this patch, the code in Item_field::print() used
this convention (described in sql_explain.h:ExplainDataStructureLifetime):
- By default, the table that Item_field refers to is accessible.
- ANALYZE and SHOW {EXPLAIN|ANALYZE} may print Items after some
temporary tables have been dropped. They use
QT_DONT_ACCESS_TMP_TABLES flag. When it is ON, Item_field::print
will not access the table it refers to, if it is a temp.table
The bug was that EXPLAIN statement also may compute subqueries (depending
on subquery context and @@expensive_subquery_limit setting). After the
computation, the subquery calls JOIN::cleanup(true) which drops some of
its temporary tables. Calling Item_field::print() that refer to such table
will cause an access to free'd memory.
In this patch, we take into account that query optimization can compute
a subquery and discard its temporary tables. Item_field::print() now
assumes that any temporary table might have already been dropped.
This means QT_DONT_ACCESS_TMP_TABLES flag is not needed - we imply it is
always present.
But we also make one exception: derived tables are not freed in
JOIN::cleanup() call. They are freed later in close_thread_tables(),
at the same time when regular tables are closed.
Because of that, Item_field::print may assume that temp.tables
representing derived tables are available.
Initial patch by: Rex Jonston
Reviewed by: Monty <monty@mariadb.org>
The code in create_internal_tmp_table() didn't take into account that
now temporary (derived) tables may have multiple indexes:
- one index due to duplicate removal
= In this example created by conversion of big-IN(...) into subquery
= this index might be converted into a "unique constraint" if the key
length is too large.
- one index added by derived_with_keys optimization.
Make create_internal_tmp_table() handle multiple indexes.
Before this patch, use of a unique constraint was indicated in
TABLE_SHARE::uniques. This was ok as unique constraint was the only index
in the table. Now it's no longer the case so TABLE_SHARE::uniques is removed
and replaced with an in-memory-only flag HA_UNIQUE_HASH.
This patch is based on Monty's patch.
Co-Author: Monty <monty@mariadb.org>
This bug affected EXPLAIN EXTENDED command for single-table DELETE that
used an IN subquery in its WHERE clause. A crash happened if the optimizer
chose to employ index_subquery or unique_subquery access when processing
such command.
The crash happened when the command tried to print the transformed query.
In the current code of 10.4 for single-table DELETE statements the output
of any explain command is produced after the join structures of all used
subqueries have been destroyed. JOIN::destroy() sets the field tab of the
JOIN_TAB structures created for subquery tables to NULL. As a result
subselect_indexsubquery_engine::print(), subselect_indexsubquery_engine()
cannot use this field to get the alias name of the joined table.
This patch suggests to use the field TABLE_LIST::TAB that can be accessed
from JOIN_TAB::tab_list to get the alias name of the joined table.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This error was discovered while working on
MDEV-30540 Wrong result with IN list length reaching
IN_PREDICATE_CONVERSION_THRESHOLD
If there is read error from handler::ha_rnd_next() during a recursive
query, st_select_lex_unit::exec_recursive() will crash as it will try to
get the error code from a structure that was deleted by the callee.
The code was using the construct:
sl->join->exec();
saved_error=sl->join->error;
This does not work as sl->join was freed by the exec() and sl->join would
be set to 0.
Fixed by having JOIN::exec() return the error code.
The included test case simulates the error in ha_rnd_next(), which causes
a crash without the patch.
scovered whle working on
MDEV-30540 Wrong result with IN list length reaching
IN_PREDICATE_CONVERSION_THRESHOLD
If there is read error from handler::ha_rnd_next() during a recursive
query, st_select_lex_unit::exec_recursive() will crash as it will try to
get the error code from a structure that was deleted by the callee.
The code was using the construct:
sl->join->exec();
saved_error=sl->join->error;
This does not work as sl->join was freed by the exec() and sl->join was
set to 0.
Fixed by having JOIN::exec() return the error code.
The included test case simulates the error in ha_rnd_next(), which causes
a crash without the patch.
This patch allowed transformation of EXISTS subqueries into equivalent
IN predicands at the top level of WHERE conditions for multi-table UPDATE
and DELETE statements. There was no reason to prohibit the transformation
for such statements. The transformation provides more opportunities of
using semi-join optimizations.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The idea is that instead of marking all select_lex's with DISTINCT, we
only mark those that really need distinct result.
Benefits of this change:
- Temporary tables used with derived tables, UNION, IN are now smaller
as duplicates are removed already on the insert phase.
- The optimizer can now produce better plans with EQ_REF. This can be
seen from the tests where several queries does not anymore materialize
derived tables twice.
- Queries affected by 'in_predicate_conversion_threshold' where large IN
lists are converted to sub query produces better plans.
Other things:
- Removed on duplicate call to sel->init_select() in
LEX::add_primary_to_query_expression_body()
- I moved the testing of
tab->table->pos_in_table_list->is_materialized_derived()
in join_read_const_table() to the caller as it caused problems for
derived tables that could be proven to be const tables.
This also is likely to fix some bugs as if join_read_const_table()
was aborted, the table was left marked as JT_CONST, which cannot
be good. I added an ASSERT there for now that can be removed when
the code has been properly tested.
To prevent ASAN heap-use-after-poison in the MDEV-16549 part of
./mtr --repeat=6 main.derived
the initialization of Name_resolution_context was cleaned up.
Nowdays subquery in a UNION's ORDER BY placed correctly in fake select,
the only problem was incorrect Name_resolution_contect is fixed by this
patch in parsing, so we do not need scanning/reseting of ORDER BY of
a union.