- When doing join optimization, pre-sort the tables so that they mimic the execution
order we've had with 'semijoin=off'.
- That way, we will not get regressions when there are two query plans (the old and the
new) that have indentical costs but different execution times (because of factors that
the optimizer was not able to take into account).
include/mysql_com.h:
remove "shutdown levels" that aren't shutdown levels from mysql_enum_shutdown_level
mysys/my_addr_resolve.c:
my_snprintf in 5.5 (but not in 5.3) supports %p
sql/item_func.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
sql/item_subselect.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
sql/opt_subselect.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
sql/sql_select.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
A defect in the subquery substitution code may lead to a server crash:
setting substitution's name should be followed by setting its length
(to keep them in sync).
mysql-test/r/gis.result:
BUG#12537203 - CRASH WHEN SUBSELECTING GLOBAL VARIABLES IN GEOMETRY FUNCTION ARGUMENTS
test result.
mysql-test/t/gis.test:
BUG#12537203 - CRASH WHEN SUBSELECTING GLOBAL VARIABLES IN GEOMETRY FUNCTION ARGUMENTS
test case.
sql/item_subselect.cc:
BUG#12537203 - CRASH WHEN SUBSELECTING GLOBAL VARIABLES IN GEOMETRY FUNCTION ARGUMENTS
set substitution's name length as well as the name itself (to keep them in sync).
A defect in the subquery substitution code may lead to a server crash:
setting substitution's name should be followed by setting its length
(to keep them in sync).
The result of materialization of the right part of an IN subquery predicate
is placed into a temporary table. Each row of the materialized table is
distinct. A unique key over all fields of the temporary table is defined and
created. It allows to perform key look-ups into the table.
The table created for a materialized subquery can be accessed by key as
any other table. The function best_access-path search for the best access
to join a table to a given partial join. With some where conditions this
function considers a possibility of a ref_or_null access. If such access
employs the unique key on the temporary table then when estimating
the cost this access the function tries to use the array rec_per_key. Yet,
such array is not built for this unique key. This causes a crash of the server.
Rows returned by the subquery that contain nulls don't have to be placed
into temporary table, as they cannot be match any row produced by the
left part of the subquery predicate. So all fields of the temporary table
can be defined as non-nullable. In this case any ref_or_null access
to the temporary table does not make any sense and it does not make sense
to estimate such an access.
The fix makes sure that the temporary table for a materialized IN subquery
is defined with columns that are all non-nullable. The also ensures that
any row with nulls returned by the subquery is not placed into the
temporary table.
The function subselect_uniquesubquery_engine::copy_ref_key has to take into
account that when EXPLAIN is processed the array of store_key object created
for any TABLE_REF may contain elements for constant items. These items should
be ignored by thefunction.
Completed the fix for this bug.
Note: in 5.3 the affected 'if' statement in Item_in_subselect::single_value_transformer()
starting with the condition (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY)
should be removed altogether. The change from table.cc is not needed either.
This is because in 5.3
- min/max transformation for subqueries are done at the optimization phase
- evaluation of the expensive subqueries is done at the execution phase.
Added an EXPLAIN EXTENDED to the test case for bug #12329653.
The MIN/MAX optimizer code from the function opt_sum_query erroneously
did not take into account conjunctive conditions that did not depend on
any table, yet were not identified as constant items. These could be
items containing rand() or PS/SP parameters. These items are supposed
to be evaluated at the execution phase. That's why if such conditions
can be extracted from the WHERE condition the MIN/MAX optimization is
not applied as currently it is always done at the optimization phase.
(In 5.3 expensive subqueries are also evaluated only at the execution
phase. So, if a constant condition with such subquery can be extracted
from the WHERE clause the MIN/MAX optimization should not be applied
in 5.3.)
IF an IN/ALL/SOME predicate with a constant left part is transformed
into an EXISTS subquery the resulting subquery should not be considered
uncacheable if the right part of the predicate is not uncacheable.
Backported the function dbug_print_item() from 5.3. The function is used
only for debugging.
The patch differs from the original MySQL patch as follows:
- All test case differences have been reviewed one by one, and
care has been taken to restore the original plan so that each
test case executes the code path it was designed for.
- A bug was found and fixed in MariaDB 5.3 in
Item_allany_subselect::cleanup().
- ORDER BY is not removed because we are unsure of all effects,
and it would prevent enabling ORDER BY ... LIMIT subqueries.
- ref_pointer_array.m_size is not adjusted because we don't do
array bounds checking, and because it looks risky.
Original comment by Jorgen Loland:
-------------------------------------------------------------
WL#5953 - Optimize away useless subquery clauses
For IN/ALL/ANY/SOME/EXISTS subqueries, the following clauses are
meaningless:
* ORDER BY (since we don't support LIMIT in these subqueries)
* DISTINCT
* GROUP BY if there is no HAVING clause and no aggregate
functions
This WL detects and optimizes away these useless parts of the
query during JOIN::prepare()
- Part 1 of the fix: for semi-join merged subqueries, calling child_join->optimize() until we're done with all
PS-lifetime optimizations in the parent.
The problem was that when we have single row subquery with no rows
Item_cache(es) which represent result row was not null and being
requested via element_index() returned random value.
The fix is setting all Item_cache(es) in NULL before executing the
query (reset() method) which guaranty NULL value of whole query
or its elements requested in any way if no rows was found.
set_null() method was added to Item_cache to guaranty correct NULL
value in case of reseting the cache.
The patch also fixes an unrelated compiler warning.
Analysis:
The temporary table created during SJ-materialization
might be used for sorting for a group by operation. The
sort buffers for this internal temporary table were not
cleared by the execution code after each subquery
re-execution. This resulted in a memory leak detected
by valgrind.
Solution:
Cleanup the sort buffers for the semijon tables as well.
sql/item_subselect.cc:
- Fix a compiler warning and add logic to revert to table
scan partial match when there are more rows in the materialized
subquery than there can be bits in the NULL bitmap index used
for partial matching.
sql/opt_subselect.cc:
- Fixed a memory leak detected by valgrind
Analysis:
The bug is a result of an incomplete fix for bug lp:869036.
That fix didn't take into account that there may be a case
when ther are no NULLs in the materialized subquery, however
all columns without NULLs may not be grouped in the only
non-null index. This is the case when the left subquery expression
has nullable columns.
Solution:
The patch handles two missing sub-cases of the case when there are
no value (non-null matches) for any outer expression, and there are
both NULLs and non-NUll values in the outer reference.
a) If the materialized subquery contains no NULLs there cannot be a
partial match, because there are no NULLs in those columns where
the outer reference has no NULLs.
b) If the materialized subquery contains NULLs, but there exists a
column, such that its corresponding outer expression has no NULL,
and this column also has no NULL. Then there cannot be a partial
match either.
Apart from the fix, the patch also adds few more unrelated test
cases for partial matching, and fixes few typos.
Analysis:
This bug uncovered that partial matching via rowid intersection
didn't handle the case when:
- the left IN argument has some NULLs,
- there are no non-null value matches, and there is no non-null
column,
- the subquery columns that are not covered with the NULLs in
the left IN argument contain at least one row, such that it
has NULL values in all columns where the left IN operand has
no NULLs.
In this case there is a partial match.
In addition the analysis of the related code uncovered incorrect
handling of few other related cases.
Solution:
The solution for the bug is to check if there exists a row with
NULLs in all columns other than the ones having NULL in the
let IN operand.
The check is implemented via checking whether the bitmaps that
store NULL information in class Ordered_key have a non-empty
intersection for the relevant columns.
The intersection itself is implemented via the function
bitmap_exists_intersection() in my_bitmap.c.
In MariaDB, when running in ONLY_FULL_GROUP_BY mode,
the server produced in incorrect error message that there
is an aggregate function without GROUP BY, for artificially
created MIN/MAX functions during subquery MIN/MAX optimization.
The fix introduces a way to distinguish between artifially
created MIN/MAX functions as a result of a rewrite, and normal
ones present in the query. The test for ONLY_FULL_GROUP_BY violation
now tests in addition if a MIN/MAX function was part of a MIN/MAX
subquery rewrite.
In order to be able to distinguish these MIN/MAX functions, the
patch introduces an additional flag in Item_in_subselect::in_strategy -
SUBS_STRATEGY_CHOSEN. This flag is set when the optimizer makes its
final choice of a subuqery strategy. In order to make the choice
consistent, access to Item_in_subselect::in_strategy is provided
via new class methods.
******
Fix MySQL BUG#12329653
In MariaDB, when running in ONLY_FULL_GROUP_BY mode,
the server produced in incorrect error message that there
is an aggregate function without GROUP BY, for artificially
created MIN/MAX functions during subquery MIN/MAX optimization.
The fix introduces a way to distinguish between artifially
created MIN/MAX functions as a result of a rewrite, and normal
ones present in the query. The test for ONLY_FULL_GROUP_BY violation
now tests in addition if a MIN/MAX function was part of a MIN/MAX
subquery rewrite.
In order to be able to distinguish these MIN/MAX functions, the
patch introduces an additional flag in Item_in_subselect::in_strategy -
SUBS_STRATEGY_CHOSEN. This flag is set when the optimizer makes its
final choice of a subuqery strategy. In order to make the choice
consistent, access to Item_in_subselect::in_strategy is provided
via new class methods.
Analysis:
Equality propagation propagated the constant '7' into
args[0] of the Item_in_optimizer that stands for the
"< ANY" predicate. At the same the min/max subquery
rewrite swapped the order of the left and right operands
of the "<" predicate, but used Item_in_subselect::left_expr.
As a result, when the <ANY predicate is executed early in the
execution phase as a contant condition, instead of a constant
right (swapped) argument of the < predicate, there was a field
(t3.a). This field had no data, since the whole predicate is
considered constant, and it is evaluated before any tables are
read. Having junk in the field row buffer produced wrong result
Solution:
Fix create_swap to pick the correct Item_in_optimizer left
argument.
The problem was that merged views has its own nest_level numbering =>
when we compare nest levels we should take into considiration basis (i.e. 0 level),
if it is different then nest levels are not comparable.
This bug happened for the queries over multi-table mergeable views
because the bitmap TABLE::read_set of the underlying tables were not
updated after the views had been merged into the query.
Now this bitmaps are updated properly.
Also the bitmap TABLE::merge_keys now is updated in prevention of
future bugs.
This bug happened due to incompleteness of the fix for bug 872735:
the occurrences of the fields in the conditions of correlated
subqueries were not taken into account when recalculating
covering keys bit maps.