check sequence privileges in Item_func_nextval::fix_fields(),
just like column privileges are checked in Item_field::fix_fields()
remove sequence specific hacks that kinda made sequence privilege
checks works, but not in all cases. And they were too lax,
didn't requre SELECT privilege for NEXTVAL. Also INSERT privilege looks
wrong here, UPDATE would've been more appropriate, but won't
change that for compatibility reasons.
also fixes
MDEV-36413 User without any privileges to a sequence can read from it and modify it via column default
LEAST() and GREATEST() erroneously calcucalted the result as signed
for BIGINT UNSIGNED arguments.
Adding a new method for unsigned arguments:
Item_func_min_max::val_uint_native()
Search conditions were evaluated using val_int(), which was wrong.
Fixing the code to use val_bool() instead.
Details:
- Adding a new item_base_t::IS_COND flag which marks Items used
as <search condition> in WHERE, HAVING, JOIN ON, CASE WHEN clauses.
The flag is at the parse time.
These expressions must be evaluated using val_bool() rather than val_int().
Note, the optimizer creates more Items which are used as search conditions.
Most of these items are not marked with IS_COND yet. This is OK for now,
but eventually these Items can also be fixed to have the flag.
- Adding a method Item::is_cond() which tests if the Item has the IS_COND flag.
- Implementing Item_cache_bool. It evaluates the cached expression using
val_bool() rather than val_int().
Overriding Type_handler_bool::Item_get_cache() to create Item_cache_bool.
- Implementing Item::save_bool_in_field(). It uses val_bool() rather than
val_int() to evaluate the expression.
- Implementing Type_handler_bool::Item_save_in_field()
using Item::save_bool_in_field().
- Fixing all Item_bool_func descendants to implement a virtual val_bool()
rather than a virtual val_int().
- To find places where val_int() should be fixed to val_bool(), a few
DBUG_ASSERT(!is_cond()) where added into val_int() implementations
of selected (most frequent) classes:
Item_field
Item_str_func
Item_datefunc
Item_timefunc
Item_datetimefunc
Item_cache_bool
Item_bool_func
Item_func_hybrid_field_type
Item_basic_constant descendants
- Fixing all places where DBUG_ASSERT() happened during an "mtr" run
to use val_bool() instead of val_int().
Analysis:
The value gets appended as string instead of unescaped json value
Fix:
Append the value of json in a temporary string and then store it in the
field instead of directly storing as string.
Based on the current logic, objects of classes Item_func_charset and
Item_func_coercibility (responsible for CHARSET() and COERCIBILITY()
functions) are always considered constant.
However, SQL syntax allows their use in a non-constant manner, such as
CHARSET(t1.a), COERCIBILITY(t1.a).
In these cases, the `used_tables()` parameter corresponds to table names
in the function parameters, creating an inconsistency: the item is marked
as constant but accesses tables. This leads to crashes when
conditions with CHARSET()/COERCIBILITY() are pushed into derived tables.
This commit addresses the issue by setting `used_tables()` to 0 for
`Item_func_charset` and `Item_func_coercibility`. Additionally, the items
now store the return values during the preparation phase and return
them during the execution phase. This ensures that the items do not call
its arguments methods during the execution and are truly constant.
Reviewer: Alexander Barkov <bar@mariadb.com>
The `Item` class methods `get_copy()`, `build_clone()`, and `clone_item()`
face an issue where they may be defined in a descendant class
(e.g., `Item_func`) but not in a further descendant (e.g., `Item_func_child`).
This can lead to scenarios where `build_clone()`, when operating on an
instance of `Item_func_child` with a pointer to the base class (`Item`),
returns an instance of `Item_func` instead of `Item_func_child`.
Since this limitation cannot be resolved at compile time, this commit
introduces runtime type checks for the copy/clone operations.
A debug assertion will now trigger in case of a type mismatch.
`get_copy()`, `build_clone()`, and `clone_item()` are no more virtual,
but virtual `do_get_copy()`, `do_build_clone()`, and `do_clone_item()`
are added to the protected section of the class `Item`.
Additionally, const qualifiers have been added to certain methods
to enhance code reliability.
Reviewer: Oleksandr Byelkin <sanja@mariadb.com>
Json test about max statement time fails with freebsd because on some
architectures the test might execute faster and the statement may not fail.
To simulate failure regardless of architecture, introduce a wait of seconds
longer than the max_statement_time.
Some fixes related to commit f838b2d799 and
Rows_log_event::do_apply_event() and Update_rows_log_event::do_exec_row()
for system-versioned tables were provided by Nikita Malyavin.
This was required by test versioning.rpl,trx_id,row.
Starting with clang-16, MemorySanitizer appears to check that
uninitialized values not be passed by value nor returned.
Previously, it was allowed to copy uninitialized data in such cases.
get_foreign_key_info(): Remove a local variable that was passed
uninitialized to a function.
DsMrr_impl: Initialize key_buffer, because DsMrr_impl::dsmrr_init()
is reading it.
test_bind_result_ext1(): MYSQL_TYPE_LONG is 32 bits, hence we must
use a 32-bit type, such as int. sizeof(long) differs between
LP64 and LLP64 targets.
Functions extracting non-negative datetime components:
- YEAR(dt), EXTRACT(YEAR FROM dt)
- QUARTER(td), EXTRACT(QUARTER FROM dt)
- MONTH(dt), EXTRACT(MONTH FROM dt)
- WEEK(dt), EXTRACT(WEEK FROM dt)
- HOUR(dt),
- MINUTE(dt),
- SECOND(dt),
- MICROSECOND(dt),
- DAYOFYEAR(dt)
- EXTRACT(YEAR_MONTH FROM dt)
did not set their max_length properly, so in the DECIMAL
context they created a too small DECIMAL column, which
led to the 'Out of range value' error.
The problem is that most of these functions historically
returned the signed INT data type.
There were two simple ways to fix these functions:
1. Add +1 to max_length.
But this would also change their size in the string context
and create too long VARCHAR columns, with +1 excessive size.
2. Preserve max_length, but change the data type from INT to INT UNSIGNED.
But this would break backward compatibility.
Also, using UNSIGNED is generally not desirable,
it's better to stay with signed when possible.
This fix implements another solution, which it makes all these functions
work well in all contexts: int, decimal, string.
Fix details:
- Adding a new special class Type_handler_long_ge0 - the data type
handler for expressions which:
* should look like normal signed INT
* but which known not to return negative values
Expressions handled by Type_handler_long_ge0 store in Item::max_length
only the number of digits, without adding +1 for the sign.
- Fixing Item_extract to use Type_handler_long_ge0
for non-negative datetime components:
YEAR, YEAR_MONTH, QUARTER, MONTH, WEEK
- Adding a new abstract class Item_long_ge0_func, for functions
returning non-negative datetime components.
Item_long_ge0_func uses Type_handler_long_ge0 as the type handler.
The class hierarchy now looks as follows:
Item_long_ge0_func
Item_long_func_date_field
Item_func_to_days
Item_func_dayofmonth
Item_func_dayofyear
Item_func_quarter
Item_func_year
Item_long_func_time_field
Item_func_hour
Item_func_minute
Item_func_second
Item_func_microsecond
- Cleanup: EXTRACT(QUARTER FROM dt) created an excessive VARCHAR column
in string context. Changing its length from 2 to 1.
Changing the way how a the following conditions are evaluated:
WHERE timestamp_column=datetime_const_expr
(for all comparison operators: =, <=>, <, >, <=, >=, <> and for NULLIF)
Before the change it was always performed as DATETIME.
That was not efficient, as involved per-row TIMESTAMP->DATETIME conversion
for timestamp_column. For example, in case of the SYSTEM time zone
it involved a localtime_r() call, which is known to be slow.
After the change it's performed as TIMESTAMP in many cases.
This allows to avoid per-row conversion, as it works the other way around:
datetime_const_expr is converted to TIMESTAMP once before the execution stage.
Note, datetime_const_expr must be inside monotone continuous periods of
the current time zone, i.e. not near these anomalies:
- DST changes (spring forward, fall back)
- leap seconds