Execution of UPDATE statement on a table that has an associated trigger
and the UPDATE statement tries to modify a column having the DEFAULT
clause, could result in either assert firing or incorrect issuing of
the ER_BAD_NULL_ERROR error.
The reason of such behaviour is that on opening of a table that has
an associated trigger, the method
Table_triggers_list::prepare_record_accessors
called to prepare Field objects referencing TABLE::record[1] instead
of record[0]. This method allocates a new array of Field objects
as copies of original table fields but updated null_ptr data
members pointing to an array of extra_null_bitmap allocated before
that on table's mem_root. Later switch_to_nullable_trigger_fields()
is called where table' fields is switched to the new array allocated at
Table_triggers_list::prepare_record_accessors().
After that, when fill_record() is invoked to fill table fields with
values, so the make_default_field is invoked to handle the clause
DEFAULT and the function make_default_field() called to create a field
object. The function make_default_field() creates a copy of Field
object and updates its data member prt/null_tr to position their to
right place of table's record buffer, but since the method
Table_triggers_list::prepare_record_accessors
has been invoked before, the expression
def_field->table->s->default_values - def_field->table->record[0]
used for pointers adjustment leads to pointing to arbitrary memory not
associated with the table.
To fix the issue, use the TABLE_SHARE fields for referencing to columns
default values.
Fixing the code adding MySQL _0900_ collations as _uca1400_ aliases
not to perform deep initialization of the corresponding _uca1400_
collations.
Only basic initialization is now performed which allows to watch
these collations (both _0900_ and _uca1400_) in queries to
INFORMATION_SCHEMA tables COLLATIONS and
COLLATION_CHARACTER_SET_APPLICABILITY,
as well as in SHOW COLLATION statements.
Deep initialization is now performed only when a collation
(either the _0900_ alias or the corresponding _uca1400_ collation)
is used for the very first time after the server startup.
Refactoring was done to maintain the code easier:
- most of the _uca1400_ code was moved from ctype-uca.c
to a new file ctype-uca1400.c
- most of the _0900_ code was moved from type-uca.c
to a new file ctype-uca0900.c
Change details:
- The original function add_alias_for_collation() added by the patch for
"MDEV-20912 Add support for utf8mb4_0900_* collations in MariaDB Server"
was removed from mysys/charset.c, as it had two two problems:
a. it forced deep initialization of the _uca1400_ collations
when adding _0900_ aliases for them at the server startup
(the main reported problem)
b. the collation initialization code in add_alias_for_collation()
was related more to collations rather than to memory management,
so /strings should be a better place for it than /mysys.
The code from add_alias_for_collation() was split into separate functions.
Cyclic dependency was removed. `#include <my_sys.h>` was removed
from /strings/ctype-uca.c. Collations are now added using a callback
function MY_CHARSET_LOADED::add_collation, like it is done for
user collations defined in Index.xml. The code in /mysys sets
MY_CHARSET_LOADED::add_collation to add_compiled_collation().
- The function compare_collations() was removed.
A new virtual function was added into my_collation_handler_st instead:
my_bool (*eq_collation)(CHARSET_INFO *self, CHARSET_INFO *other);
because it is the collation handler who knows how to detect equal
collations by comparing only some of CHARSET_INFO members without
their deep initialization.
Three implementations were added:
- my_ci_eq_collation_uca() for UCA collations, it compares
_0900_ collations as equal to their corresponding _uca1400_ collations.
- my_ci_eq_collation_utf8mb4_bin(), it compares
utf8mb4_nopad_bin and utf8mb4_0900_bin as equal.
- my_ci_eq_collation_generic() - the default implementation,
which compares all collations as not equal.
A C++ wrapper CHARSET_INFO::eq_collations() was added.
The code in /sql was changes to use the wrapper instead of
the former calls for the removed function compare_collations().
- A part of add_alias_for_collation() was moved into a new function
my_ci_alloc(). It allocates a memory for a new charset_info_st
instance together with the collation name and the comment using a single
MY_CHARSET_LOADER::once_alloc call, which points to my_once_alloc()
in the server.
- A part of add_alias_for_collation() was moved into a new function
my_ci_make_comment_for_alias(). It makes an "Alias for xxx" string,
e.g. "Alias for utf8mb4_uca1400_swedish_ai_ci" in case of
utf8mb4_sv_0900_ai_ci.
- A part of the code in create_tailoring() was moved to
a new function my_uca1400_collation_get_initialized_shared_uca(),
to reuse the code between _uca1400_ and _0900_ collations.
- A new function my_collation_id_is_mysql_uca0900() was added
in addition to my_collation_id_is_mysql_uca1400().
- Functions to build collation names were added:
my_uca0900_collation_build_name()
my_uca1400_collation_build_name()
- A shared function function was added:
my_bool
my_uca1400_collation_alloc_and_init(MY_CHARSET_LOADER *loader,
LEX_CSTRING name,
LEX_CSTRING comment,
const uca_collation_def_param_t *param,
uint id)
It's reused to add _uca1400_ and _0900_ collations, with basic
initialization (without deep initialization).
- The function add_compiled_collation() changed its return type from
void to int, to make it compatible with MY_CHARSET_LOADER::add_collation.
- Functions mysql_uca0900_collation_definition_add(),
mysql_uca0900_utf8mb4_collation_definitions_add(),
mysql_utf8mb4_0900_bin_add() were added into ctype-uca0900.c.
They get MY_CHARSET_LOADER as a parameter.
- Functions my_uca1400_collation_definition_add(),
my_uca1400_collation_definitions_add() were moved from
charset-def.c to strings/ctype-uca1400.c.
The latter now accepts MY_CHARSET_LOADER as the first parameter
instead of initializing a MY_CHARSET_LOADER inside.
- init_compiled_charsets() now initializes a MY_CHARSET_LOADER
variable and passes it to all functions adding collations:
- mysql_utf8mb4_0900_collation_definitions_add()
- mysql_uca0900_utf8mb4_collation_definitions_add()
- mysql_utf8mb4_0900_bin_add()
- A new structure was added into ctype-uca.h:
typedef struct uca_collation_def_param
{
my_cs_encoding_t cs_id;
uint tailoring_id;
uint nopad_flags;
uint level_flags;
} uca_collation_def_param_t;
It simplifies reusing the code for _uca1400_ and _0900_ collations.
- The definition of MY_UCA1400_COLLATION_DEFINITION was
moved from ctype-uca.c to ctype-uca1400.h, to reuse
the code for _uca1400_ and _0900_ collations.
- The definitions of "MY_UCA_INFO my_uca_v1400" and
"MY_UCA_INFO my_uca1400_info_tailored[][]" were moved from
ctype-uca.c to ctype-uca1400.c.
- The definitions/declarations of:
- mysql_0900_collation_start,
- struct mysql_0900_to_mariadb_1400_mapping
- mysql_0900_to_mariadb_1400_mapping
- mysql_utf8mb4_0900_collation_definitions_add()
were moved from ctype-uca.c to ctype-uca0900.c
- Functions
my_uca1400_make_builtin_collation_id()
my_uca1400_collation_definition_init()
my_uca1400_collation_id_uca400_compat()
my_ci_get_collation_name_uca1400_context()
were moved from ctype-uca.c to ctype-uca1400.c and ctype-uca1400.h
- A part of my_uca1400_collation_definition_init()
was moved into my_uca0520_builtin_collation_by_id(),
to make functions smaller.
The problem is that copy function was used in field list but never
copied in this execution path.
So copy should be performed before returning result.
Protection against uninitialized copy usage added.
Item:print_for_table_def() uses QT_TO_SYSTEM_CHARSET to print
the DEFAULT expression into FRM file during CREATE TABLE.
Therefore, the expression is encoded in utf8 in FRM.
get_field_default_value() erroneously used field->charset() to
print the DEFAULT expression at SHOW CREATE TABLE time.
Fixing get_field_default_value() to use &my_charset_utf8mb4_general_ci instead.
This makes DEFAULT work in the way way with:
- virtual column expressions:
if (field->vcol_info)
{
StringBuffer<MAX_FIELD_WIDTH> str(&my_charset_utf8mb4_general_ci);
field->vcol_info->print(&str);
- check constraint expressions:
if (field->check_constraint)
{
StringBuffer<MAX_FIELD_WIDTH> str(&my_charset_utf8mb4_general_ci);
field->check_constraint->print(&str);
Additional cleanup:
Fixing system_charset_info to &my_charset_utf8mb4_general_ci in a few
places to make non-BMP characters work in DEFAULT, virtual column,
check constraint expressions.
MDEV-28127 did is_equal() which compared vcol expressions
literally. But another table vcol expression is not equal because of
different table name.
We implement another comparison method is_identical() which respects
different table name in vcol comparison. If any field item points to
table_A and compared field item points to table_B, such items are
treated as equal in (table_A, table_B) comparison. This is done by
cloning table_B expression and renaming any table_B entries to table_A
in it.
value.type_handler()->result_type()'
failed in virtual bool Item_param::get_date(THD*, MYSQL_TIME*, date_mode_t)
This is a cleanup for MDEV-25593. When binding from NULL, IGNORE or DEFAULT,
value.type_handler should be set to &type_handler_null,
to satisfy the DBUG_ASSERT in Item_param::get_date().
This is done by mapping most of the existing MySQL unicode 0900 collations
to MariadB 1400 unicode collations. The assumption is that 1400 is a super
set of 0900 for all practical purposes.
I also added a new function 'compare_collations()' and changed most code
to use this instead of comparing character sets directly.
This enables one to seamlessly mix-and-match the corresponding 0900 and
1400 sets. Field comparision and alter table treats the character sets
as identical.
All MySQL 8.0 0900 collations are supported except:
- utf8mb4_ja_0900_as_cs
- utf8mb4_ja_0900_as_cs_ks
- utf8mb4_ru_0900_as_cs
- utf8mb4_zh_0900_as_cs
These do not have corresponding entries in the MariadB 01400 collations.
Other things:
- Added COMMENT colum to information_schema.collations. For utf8mb4_0900
colletions it contains the corresponding alias collation.
When binding to NULL, DEFAULT or IGNORE from an Item value, Item_param did not
change m_type_handler, so its value remained from the previous bind.
Thid led to DBUG_ASSERTs in Item_param::get_date() and
Timestamp_or_zero_datetime_native_null.
Fix:
Set Item_param::m_type_handler to &type_handler_null when
binding from an Item returning NULL.
This patch also fixes MDEV-35427.
Item_char_typecast::val_str_generic() uses Item::str_value as a buffer.
Item::val_str_ascii() also used Item::str_value as a buffer.
As a result, str_value tried to copy to itself.
Fixing val_str_ascii() to use a local buffer instead of str_value.
Two problem solved:
1) Item_default_value makes a shallow copy so the copy
should not delete field belong to the Item
2) Item_default_value should not inherit
derived_field_transformer_for_having and
derived_field_transformer_for_where (in this variant
pushing DEFAULT(f) is prohibited (return NULL) but
if return "this" it will be allowed (should go with
a lot of tests))
Search conditions were evaluated using val_int(), which was wrong.
Fixing the code to use val_bool() instead.
Details:
- Adding a new item_base_t::IS_COND flag which marks Items used
as <search condition> in WHERE, HAVING, JOIN ON, CASE WHEN clauses.
The flag is at the parse time.
These expressions must be evaluated using val_bool() rather than val_int().
Note, the optimizer creates more Items which are used as search conditions.
Most of these items are not marked with IS_COND yet. This is OK for now,
but eventually these Items can also be fixed to have the flag.
- Adding a method Item::is_cond() which tests if the Item has the IS_COND flag.
- Implementing Item_cache_bool. It evaluates the cached expression using
val_bool() rather than val_int().
Overriding Type_handler_bool::Item_get_cache() to create Item_cache_bool.
- Implementing Item::save_bool_in_field(). It uses val_bool() rather than
val_int() to evaluate the expression.
- Implementing Type_handler_bool::Item_save_in_field()
using Item::save_bool_in_field().
- Fixing all Item_bool_func descendants to implement a virtual val_bool()
rather than a virtual val_int().
- To find places where val_int() should be fixed to val_bool(), a few
DBUG_ASSERT(!is_cond()) where added into val_int() implementations
of selected (most frequent) classes:
Item_field
Item_str_func
Item_datefunc
Item_timefunc
Item_datetimefunc
Item_cache_bool
Item_bool_func
Item_func_hybrid_field_type
Item_basic_constant descendants
- Fixing all places where DBUG_ASSERT() happened during an "mtr" run
to use val_bool() instead of val_int().
The 10.5->10.6 merge commit 3bc98a4ec4 casts the arg to an int16
pointer in set_extraction_flag_processor(). This matched the previous
commit c76eabfb5e where set_extraction_flag was changed to have int16 arg
instead of int.
The commit a5e4c34991 for MDEV-29363 added a call to
set_extraction_flag_processor on IMMUTABLE_FL (MARKER_IMMUTABLE in 10.6).
The subsequent 10.5->10.6 merge f071b7620b did not cast the flag
to int16 when merging this change.
The result is big-endian processors cleared the immutable
flag rather than set the flag, resulting in MDEV-29363
being unfixed on big-endian processors.
New runtime diagnostic introduced with MDEV-34490 has detected
that `Item_int_with_ref` incorrectly returns an instance of its ancestor
class `Item_int`. This commit fixes that.
In addition, this commit reverts a part of the diagnostic related
to `clone_item()` checks. As it turned out, `clone_item()` is not required
to return an object of the same class as the cloned one. For example,
look at `Item_param::clone_item()`: it can return objects of `Item_null`,
`Item_int`, `Item_string`, etc, depending on the object state.
So the runtime type diagnostic is not applicable to `clone_item()` and
is disabled with this commit.
As the similar diagnostic failures are expected to appear again
in the future, this commit introduces a new test file in the main suite:
item_types.test, and new test cases may be added to this file
Reviewer: Oleksandr Byelkin <sanja@mariadb.com>
There are 3 diff in result:
1) NULL value from SELECT
Due to incorrect truncating of the hex value, incorrect value is
written instead of original value to the view frm. This results in reading
incorrect value from frm, so eventual result is NULL.
2) 'Name_exp1' in column name (in gis.test)
This was because the identifier in SELECT is longer than 64 characters,
so 'Name_exp1' alias is also written to the view frm.
3)diff in explain extended
This was because the query plan for view protocol doesn't
contain database name. As a fix, disable view protocol for that particular
query.
The `Item` class methods `get_copy()`, `build_clone()`, and `clone_item()`
face an issue where they may be defined in a descendant class
(e.g., `Item_func`) but not in a further descendant (e.g., `Item_func_child`).
This can lead to scenarios where `build_clone()`, when operating on an
instance of `Item_func_child` with a pointer to the base class (`Item`),
returns an instance of `Item_func` instead of `Item_func_child`.
Since this limitation cannot be resolved at compile time, this commit
introduces runtime type checks for the copy/clone operations.
A debug assertion will now trigger in case of a type mismatch.
`get_copy()`, `build_clone()`, and `clone_item()` are no more virtual,
but virtual `do_get_copy()`, `do_build_clone()`, and `do_clone_item()`
are added to the protected section of the class `Item`.
Additionally, const qualifiers have been added to certain methods
to enhance code reliability.
Reviewer: Oleksandr Byelkin <sanja@mariadb.com>
from HAVING
The bug is caused by refixing of the constant subquery in pushdown from
HAVING into WHERE optimization.
Similarly to MDEV-29363 in the problematic query two references of the
constant subquery are used. After the pushdown one of the references of the
subquery is pushed into WHERE-clause and the second one remains as the part
of the HAVING-clause.
Before the represented fix, the constant subquery reference that was going to
be pushed into WHERE was cleaned up and fixed. That caused the changes of
the subquery itself and, therefore, changes for the second reference that
remained in HAVING. These changes caused a crash.
To fix this problem all constant objects that are going to be pushed into
WHERE should be marked with an IMMUTABLE_FL flag. Objects marked with this
flag are not cleaned up or fixed in the pushdown optimization.
Approved by Igor Babaev <igor@mariadb.com>
Improve performance of queries like
SELECT * FROM t1 WHERE field = NAME_CONST('a', 4);
by, in this example, replacing the WHERE clause with field = 4
in the case of ref access.
The rewrite is done during fix_fields and we disambiguate this
case from other cases of NAME_CONST by inspecting where we are
in parsing. We rely on THD::where to accomplish this. To
improve performance there, we change the type of THD::where to
be an enumeration, so we can avoid string comparisons during
Item_name_const::fix_fields. Consequently, this patch also
changes all usages of THD::where to conform likewise.