The deprecated parameters will be removed:
innodb_defragment
innodb_defragment_n_pages
innodb_defragment_stats_accuracy
innodb_defragment_fill_factor_n_recs
innodb_defragment_fill_factor
innodb_defragment_frequency
The mysql.innodb_index_stats.stat_name values 'n_page_split' and
'n_pages_freed' will lose their special meaning.
The related changes to OPTIMIZE TABLE in InnoDB will be removed as well.
The parameter innodb_optimize_fulltext_only will retain its special
meaning in OPTIMIZE TABLE.
Tested by: Matthias Leich
There is a little used option innodb_defragment that would make
OPTIMIZE TABLE not rebuild the table as usual for InnoDB, but
instead cause the index B-trees to be optimized in place.
This option uses excessive locking (exclusively locking index trees).
It never covered SPATIAL INDEX or FULLTEXT INDEX. Storage space
was never reclaimed.
Because this option is not particularly useful and causes a
maintenance burden (most recently in
commit de4030e4d4),
it is best to deprecate it, to prepare for its removal.
SUPER privilege used to allow various actions that were alternatively
allowed by one of BINLOG ADMIN, BINLOG MONITOR, BINLOG REPLAY,
CONNECTION ADMIN, FEDERATED ADMIN, REPL MASTER ADMIN, REPL SLAVE ADMIN,
SET USER, SLAVE MONITOR.
Now SUPER no longer does that, one has to grant one of the fine-grained
privileges above to be to perform corresponding actions.
On upgrade from MariaDB versions 10.11 and below all the privileges
above are granted automatically if the user has SUPER.
As a side-effect, such an upgrade will allow SUPER-user to run SHOW
BINLOG EVENTS, SHOW RELAYLOG EVENTS, SHOW SLAVE HOSTS, even if he wasn't
able to do it before the upgrade.
The patch is inspired from MySQL. Instead of using a single String to
hold the current active debug_sync signal, use a Hash_set to store
LEX_STRINGS. This patch ensures that a signal can not be lost, by being
overwritten by another thread via set DEBUG_SYNC = '... SIGNAL ...';
All signals are kepts "alive" until they are consumed by a wait event.
This requires updating test cases that assume the GLOBAL signal is never
consumed.
Follow-up work needed:
Port the additional syntax that allows one to set multiple signals
and also conditionally deactivate signals when waiting.
This was done after discussions with Igor, Sanja and Bar.
The main reason for removing the deprication was to ensure that MariaDB
is always backward compatible whenever possible.
Other things:
- Added statistics counters, mainly for the feedback plugin.
- INTO OUTFILE
- INTO variable
- If INTO is using the old syntax (end of query)
This includes all test changes from
"Changing all cost calculation to be given in milliseconds"
and forwards.
Some of the things that caused changes in the result files:
- As part of fixing tests, I added 'echo' to some comments to be able to
easier find out where things where wrong.
- MATERIALIZED has now a higher cost compared to X than before. Because
of this some MATERIALIZED types have changed to DEPENDEND SUBQUERY.
- Some test cases that required MATERIALIZED to repeat a bug was
changed by adding more rows to force MATERIALIZED to happen.
- 'Filtered' in SHOW EXPLAIN has in many case changed from 100.00 to
something smaller. This is because now filtered also takes into
account the smallest possible ref access and filters, even if they
where not used. Another reason for 'Filtered' being smaller is that
we now also take into account implicit filtering done for subqueries
using FIRSTMATCH.
(main.subselect_no_exists_to_in)
This is caluculated in best_access_path() and stored in records_out.
- Table orders has changed because more accurate costs.
- 'index' and 'ALL' for small tables has changed to use 'range' or
'ref' because of optimizer_scan_setup_cost.
- index can be changed to 'range' as 'range' optimizer assumes we don't
have to read the blocks from disk that range optimizer has already read.
This can be confusing in the case where there is no obvious where clause
but instead there is a hidden 'key_column > NULL' added by the optimizer.
(main.subselect_no_exists_to_in)
- Scan on primary clustered key does not report 'Using Index' anymore
(It's a table scan, not an index scan).
- For derived tables, the number of rows is now 100 instead of 2,
which can be seen in EXPLAIN.
- More tests have "Using index for group by" as the cost of this
optimization is now more correct (lower).
- A primary key could be preferred for a normal key, even if it would
access more rows, as it's faster to do 1 lokoup and 3 'index_next' on a
clustered primary key than one lookup trough a secondary.
(main.stat_tables_innodb)
Notes:
- There was a 4.7% more calls to best_extension_by_limited_search() in
the main.greedy_optimizer test. However examining the test results
it looked that the plans where slightly better (eq_ref where more
chained together) so I assume this is ok.
- I have verified a few test cases where there was notable/unexpected
changes in the plan and in all cases the new optimizer plans where
faster. (main.greedy_optimizer and some others)
Variables added:
- optimizer_index_block_copy_cost
- optimizer_key_copy_cost
- optimizer_key_next_find_cost
- optimizer_key_compare_cost
- optimizer_row_copy_cost
- optimizer_where_compare_cost
Some rename of defines was done to make the internal defines similar to
the visible ones:
TIME_FOR_COMPARE -> WHERE_COST; WHERE_COST was also "inverted" to be
a number between 0 and 1 that is multiply with accepted records
(similar to other optimizer variables).
TIME_FOR_COMPARE_IDX -> KEY_COMPARE_COST. This is also inverted,
similar to TIME_FOR_COMPARE.
TIME_FOR_COMPARE_ROWID -> ROWID_COMPARE_COST. This is also inverted,
similar to TIME_FOR_COMPARE.
All default costs are identical to what they where before this patch.
Other things:
- Compare factor in get_merge_buffers_cost() was inverted.
- Changed namespace to static in filesort_utils.cc
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.
The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path(). TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.
The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.
When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.
To remedy the above, the following key & row fetch related costs
has been added:
- The cost of fetching and using a row is now split into different costs:
- key + Row fetch cost (as before) but multiplied with the variable
'optimizer_cache_cost' (default to 0.5). This allows the user to
tell the optimizer the likehood of finding the key and row in the
engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
sql layer or creating a row from the join_cache to the record
buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
the engine to the SQL layer. This is used when we calculate the cost
index only reads. It makes index scans more expensive than before if
they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
when doing a index scan and comparing the rowid to the filter.
Before this cost was assumed to be 0.
All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other. There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.
To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
into account. This is used with filesort where we don't need
to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
KEY_COPY_COST & TIME_FOR_COMPARE.
I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
table.
When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.
Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.
In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).
The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.
Detailed list of changes:
- Calculate index_only_cost consistently and correctly for all scan
and ref accesses. The row fetch_cost and index_only_cost now
takes into account clustered keys, covered keys and index
only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
similar costs. This is bases on the assumption that data is more
often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
TIME_FOR_COMPARE. Now all scan costs takes this into
account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
adjusting this on can reduce or increase the cost of index or direct
record lookups. The effect of the default is that key lookups is now
a bit cheaper than before. See usage of 'optimizer_cache_cost' in
handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
which produced a wrong cost when index scan was used. Changed
JOIN_TAB:::scan_time() to take into consideration clustered and
covered keys. The values are now cached and we only have to call
this function once. Other calls are changed to use the cached
values. Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
more close to 'range' calculations. The cost is now lower than
before for small data sets and higher for large data sets as we take
into account how many keys are read (main.opt_trace_selectivity,
main.limit_rows_examined).
- Ensured that index_scan_cost() ==
range(scan_of_all_rows_in_table_using_one_range) +
MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
is choice of doing a full index scan and a range-index scan over
almost the whole table then index scan will be preferred (no
range-read setup cost). (innodb.innodb, main.show_explain,
main.range)
- Fixed the EQ_REF and REF takes into account clustered and covered
keys. This changes some plans to use covered or clustered indexes
as these are much cheaper. (main.subselect_mat_cost,
main.state_tables_innodb, main.limit_rows_examined)
- Rowid filter setup cost and filter compare cost now takes into
account fetching and checking the rowid (KEY_NEXT_FIND_COST).
(main.partition_pruning heap.heap_btree main.log_state)
- Added KEY_NEXT_FIND_COST to
Range_rowid_filter_cost_info::lookup_cost to account of the time
to find and check the next key value against the container
- Introduced ha_keyread_time(rows) that takes into account finding
the next row and copying the key value to 'record'
(KEY_COPY_COST).
- Introduced ha_key_scan_time() for calculating an index scan over
all rows.
- Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
- Added index_only_fetch_cost() as a convenience function to
OPT_RANGE.
- keyread_time() cost is slightly reduced to prefer shorter keys.
(main.index_merge_myisam)
- All of the above caused some index_merge combinations to be
rejected because of cost (main.index_intersect). In some cases
'ref' where replaced with index_merge because of the low
cost calculation of get_sweep_read_cost().
- Some index usage moved from PRIMARY to a covering index.
(main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter().
filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
of filtered rows for ranges. The reason is that we want to ensure
that 'range' is calculated similar to 'ref'. There is also more work
needed to calculate the selectivity when using ranges and ranges and
filtering. This causes filtering column in EXPLAIN EXTENDED to be
100.00 for some cases where range cannot use filtering.
(main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
finding the next row and copying the row from the engine to
'record'. This causes costs of table scan to slightly increase and
some test to changed their plan from ALL to RANGE or ALL to ref.
(innodb.innodb_mysql, main.select_pkeycache)
In a few cases where scan time of very small tables have lower cost
than a ref or range, things changed from ref/range to ALL.
(main.myisam, main.func_group, main.limit_rows_examined,
main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
materialization. This causes some very small tables to use scan
instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
to ensure that the 'Last_query_cost' status variable contains the
same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
handler::read_time(). This should have no effect as it's 1.0 by
default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
preceding tables (as have to restore all fields for all previous
table combination when checking the where clause)
The new cost added is:
(row_combinations * ROW_COPY_COST * number_of_cached_tables).
This increases the cost of join buffering in proportion of the
number of tables in the join buffer. One effect is that full scans
are now done earlier as the cost is then smaller.
(main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
caused wrong plans to be created; It prefered JT_EQ_REF even if it
would be much more expensive than a full table scan. A related
issue was that worst_seeks only applied to full lookup, not to
clustered or index only lookups, which is not consistent. This
caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
- More costs, especially for materialization and index_merge.
- Make lables more uniform
- Fixed a lot of minor bugs
- Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
the cost did not take into account the number of row retrivals
that has to be done or the cost of comparing the rows with the
WHERE clause. The cost calculated would be just a fraction of
the real cost. Now we calculate the cost as we do for ranges
and 'ref'.
- 'Using index for group-by' is used a bit more than before as
now take into account the WHERE clause cost when comparing
with 'ref' and prefer the method with fewer row combinations.
(main.group_min_max).
Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
index when displaying 'Using index'. This caused some old plans to
show 'Using index'. (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
updated, and the cost we compared with was not the one that was
used.
- Fixed very wrong cost calculation for priority queues in
check_if_pq_applicable(). (main.order_by now correctly uses priority
queue)
- When calculating cost of EQ_REF or REF, we added the cost of
comparing the WHERE clause with the found rows, not all row
combinations. This made ref and eq_ref to be regarded way to cheap
compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
cost of a JT_REF key. This may be true for InnoDB primary key, but
not for other unique keys or other engines. Now we use handler
function to calculate the cost, which allows us to handle
consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
enabled but still changed the 'keyread' variable (which is wrong).
Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
means that the cost for hash_joins more expensive than calculated
in best_access_path (a difference of 10x * TIME_OF_COMPARE).
This is fixed in the new code thanks to that we now include
TIME_OF_COMPARE cost in 'read_time'.
Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
(No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h
Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
This is because the cost of doing a range fetch of lineitem(98 rows) is
almost as big as the whole join of order,lineitem. The filtering will
also ensure that we only have to do very small key fetches of the rows
in lineitem.
- main.index_merge_myisam had a few changes where we are now using
less keys for index_merge. This is because index scans are now more
expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
This ensures that it is up to date per statements.
Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
filesort into consideration when table scan is chosen.
(main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
on a table with 1 row will now use table scan instead of key lookup.
TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
when there is a ref access but scan is chosen.
For this we have to store the lowest known value for
'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
costs. This will fix tests like main.order_by_innodb,
main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
cost_for_index_read() if there where no quick keys. This will reduce
the computed cost for ORDER BY with LIMIT in some cases.
(main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
of rows we have to read when considering using a index table scan to
resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
benefit of reading multiple rows from the same page.
log_slow_filter=admin as been available for a long time.
Uses can migrate from log_slow_statements_statements=OFF by removing
'admin' from the default log_slow_filter variable setting.
This commit changes backup execution (namely the block ddl phase),
so that node is not paused from cluster. Instead, the following
backup execution is declared as vulnerable for possible cluster
level conflicts, especially with DDL statement applying.
With this, the mariabackup execution may be aborted, if DDL
statements happen during backup execution. This abortable
backup execution is optional feature and may be
enabled/disabled by wsrep_mode: BF_ABORT_MARIABACKUP.
Note that old style node desync and pause, despite of
WSREP_MODE_BF_MARIABACKUP is needed if node is operating as
SST donor.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Starting with commit baf276e6d4 (MDEV-19229)
the parameter innodb_undo_tablespaces can be increased from its
previous default value 0 while allowing an upgrade from old databases.
We will change the default setting to innodb_undo_tablespaces=3
so that the space occupied by possible bursts of undo log records
can be reclaimed after SET GLOBAL innodb_undo_log_truncate=ON.
We will not enable innodb_undo_log_truncate by default, because it
causes some observable performance degradation.
Special thanks to Thirunarayanan Balathandayuthapani for diagnosing
and fixing a number of bugs related to this new default setting.
Tested by: Matthias Leich, Axel Schwenke, Vladislav Vaintroub
(with both values of innodb_undo_log_truncate)
The purpose of the change buffer was to reduce random disk access,
which could be useful on rotational storage, but maybe less so on
solid-state storage.
When we wished to
(1) insert a record into a non-unique secondary index,
(2) delete-mark a secondary index record,
(3) delete a secondary index record as part of purge (but not ROLLBACK),
and the B-tree leaf page where the record belongs to is not in the buffer
pool, we inserted a record into the change buffer B-tree, indexed by
the page identifier. When the page was eventually read into the buffer
pool, we looked up the change buffer B-tree for any modifications to the
page, applied these upon the completion of the read operation. This
was called the insert buffer merge.
We remove the change buffer, because it has been the source of
various hard-to-reproduce corruption bugs, including those fixed in
commit 5b9ee8d819 and
commit 165564d3c3 but not limited to them.
A downgrade will fail with a clear message starting with
commit db14eb16f9 (MDEV-30106).
buf_page_t::state: Merge IBUF_EXIST to UNFIXED and
WRITE_FIX_IBUF to WRITE_FIX.
buf_pool_t::watch[]: Remove.
trx_t: Move isolation_level, check_foreigns, check_unique_secondary,
bulk_insert into the same bit-field. The only purpose of
trx_t::check_unique_secondary is to enable bulk insert into an
empty table. It no longer enables insert buffering for UNIQUE INDEX.
btr_cur_t::thr: Remove. This field was originally needed for change
buffering. Later, its use was extended to cover SPATIAL INDEX.
Much of the time, rtr_info::thr holds this field. When it does not,
we will add parameters to SPATIAL INDEX specific functions.
ibuf_upgrade_needed(): Check if the change buffer needs to be updated.
ibuf_upgrade(): Merge and upgrade the change buffer after all redo log
has been applied. Free any pages consumed by the change buffer, and
zero out the change buffer root page to mark the upgrade completed,
and to prevent a downgrade to an earlier version.
dict_load_tablespaces(): Renamed from
dict_check_tablespaces_and_store_max_id(). This needs to be invoked
before ibuf_upgrade().
btr_cur_open_at_rnd_pos(): Specialize for use in persistent statistics.
The change buffer merge does not need this function anymore.
btr_page_alloc(): Renamed from btr_page_alloc_low(). We no longer
allocate any change buffer pages.
btr_cur_open_at_rnd_pos(): Specialize for use in persistent statistics.
The change buffer merge does not need this function anymore.
row_search_index_entry(), btr_lift_page_up(): Add a parameter thr
for the SPATIAL INDEX case.
rtr_page_split_and_insert(): Specialized from btr_page_split_and_insert().
rtr_root_raise_and_insert(): Specialized from btr_root_raise_and_insert().
Note: The support for upgrading from the MySQL 3.23 or MySQL 4.0
change buffer format that predates the MySQL 4.1 introduction of
the option innodb_file_per_table was removed in MySQL 5.6.5
as part of mysql/mysql-server@69b6241a79
and MariaDB 10.0.11 as part of 1d0f70c2f8.
In the tests innodb.log_upgrade and innodb.log_corruption, we create
valid (upgraded) change buffer pages.
Tested by: Matthias Leich
We introduce the following settable Boolean global variables:
innodb_log_file_write_through: Whether writes to ib_logfile0 are
write-through (disabling any caching, as in O_SYNC or O_DSYNC).
innodb_data_file_write_through: Whether writes to any InnoDB data files
(including the temporary tablespace) are write-through.
innodb_data_file_buffering: Whether the file system cache is enabled
for InnoDB data files.
All these parameters are OFF by default, that is, the file system cache
will be disabled, but any hardware caching is enabled, that is,
explicit calls to fsync(), fdatasync() or similar functions are needed.
On systems that support FUA it may make sense to enable write-through,
to avoid extra system calls.
If the deprecated read-only start-up parameter is set to one of the
following values, then the values of the 4 Boolean flags (the above 3
plus innodb_log_file_buffering) will be set as follows:
O_DSYNC:
innodb_log_file_write_through=ON, innodb_data_file_write_through=ON,
innodb_data_file_buffering=OFF, and
(if supported) innodb_log_file_buffering=OFF.
fsync, littlesync, nosync, or (Microsoft Windows specific) normal:
innodb_log_file_write_through=OFF, innodb_data_file_write_through=OFF,
and innodb_data_file_buffering=ON.
Note: fsync() or fdatasync() will only be disabled if the separate
parameter debug_no_sync (in the code, my_disable_sync) is set.
In mariadb-backup, the parameter innodb_flush_method will be ignored.
The Boolean parameters can be modified by SET GLOBAL while the
server is running. This will require reopening the ib_logfile0
or all currently open InnoDB data files.
We will open files straight in O_DSYNC or O_SYNC mode when applicable.
Data files we will try to open straight in O_DIRECT mode when the
page size is at least 4096 bytes. For atomically creating data files,
we will invoke os_file_set_nocache() to enable O_DIRECT afterwards,
because O_DIRECT is not supported on some file systems. We will also
continue to invoke os_file_set_nocache() on ib_logfile0 when
innodb_log_file_buffering=OFF can be fulfilled.
For reopening the ib_logfile0, we use the same logic that was developed
for online log resizing and reused for updates of
innodb_log_file_buffering.
Reopening all data files is implemented in the new function
fil_space_t::reopen_all().
Reviewed by: Vladislav Vaintroub
Tested by: Matthias Leich
Before commit 6112853cda in MySQL 4.1.1
introduced the parameter innodb_file_per_table, all InnoDB data was
written to the InnoDB system tablespace (often named ibdata1).
A serious design problem is that once the system tablespace has grown to
some size, it cannot shrink even if the data inside it has been deleted.
There are also other design problems, such as the server hang MDEV-29930
that should only be possible when using innodb_file_per_table=0 and
innodb_undo_tablespaces=0 (storing both tables and undo logs in the
InnoDB system tablespace).
The parameter innodb_change_buffering was deprecated
in commit b5852ffbee.
Starting with commit baf276e6d4
(MDEV-19229) the number of innodb_undo_tablespaces can be increased,
so that the undo logs can be moved out of the system tablespace
of an existing installation.
If all these things (tables, undo logs, and the change buffer) are
removed from the InnoDB system tablespace, the only variable-size
data structure inside it is the InnoDB data dictionary.
DDL operations on .ibd files was optimized in
commit 86dc7b4d4c (MDEV-24626).
That should have removed any thinkable performance advantage of
using innodb_file_per_table=0.
Since there should be no benefit of setting innodb_file_per_table=0,
the parameter should be deprecated. Starting with MySQL 5.6 and
MariaDB Server 10.0, the default value is innodb_file_per_table=1.
* MDEV-24377: Accept comma separated addresses as --bind-address value
When bind address form the basis of wsrep based variables, the first
address in the comma separated list is used.
The test uses the IP address 192.168.0.1 as we need to include
multiple address. This will include failures without the following
commit.
The tests for bind_multiple_address_resolution could return
addresses that we cannot bind too. Windows and FreeBSD, and
probably other OSs will terminate the service if addresses are
unavailable.
We use the WSAEADDRNOTAVAIL / POSIX EADDRNOTAVAIL codes to
continue to bind to other interfaces. If at the end of the
bind list, if no binds are successful, the we terminate
but still leaving the error messages in the log.
Co-authored-by: Daniel Black <daniel@mariadb.org>
* clarify the help text for --system-versioning-insert-history
* move the vers_write=false check from Item_field::fix_fields()
next to other vers field checks in find_field_in_table()
* move row_start validation from handler::write_row() next to
vers_update_fields()
* make secure_timestamp check to happen in one place only,
extract it into a function is_set_timestamp_vorbidden().
* overwriting vers fields is an error, just like setting @@timestamp
* don't run vers_insert_history() for every row
1. system_versioning_insert_history session variable allows
pseudocolumns ROW_START and ROW_END be specified in INSERT,
INSERT..SELECT and LOAD DATA.
2. Cleaned up select_insert::send_data() from setting vers_write as
this parameter is now set on TABLE initialization.
4. Replication of system_versioning_insert_history via option_bits in
OPTIONS_WRITTEN_TO_BIN_LOG.
- Add `replicate_rewrite_db` status variable, that may accept comma
separated key-value pairs.
- Note that option `OPT_REPLICATE_REWRITE_DB` already existed in `mysqld.h`
from this commit 23d8586dbf
Reviewer:Brandon Nesterenko <brandon.nesterenko@mariadb.com>
post-merge fixes:
* remove log_slow_queries_not_using_indexes, no need to create variables
that are deprecated since the moment of creation
* rename log_slow_query_enable->log_slow_query
no other variable uses *_enable pattern
* MDEV-29626 Assertion `self == &Sys_slow_query_log' failed in fix_log_state
* tests
Closes#2137
Thus, all these variables will be
grouped together and more logically named.
Descriptions for the old variables were updated to indicate they are
now aliases for the newly introduced variables with prefix log_slow.
log_slow_queries_not_using_indexes_filter will not be addressed
in this merge request.
log_throttle_queries_not_using_indexes seems to no longer be in use.
MTR tests are also updated to include the new variable names.
All new code of the whole pull request, including one or several files
that are either new files or modified ones, are contributed under the
BSD-new license. I am contributing on behalf of my employer Amazon Web
Services, Inc.