This commit updates default memory allocations size used with MEM_ROOT
objects to minimize the number of calls to malloc().
Changes:
- Updated MEM_ROOT block sizes in sql_const.h
- Updated MALLOC_OVERHEAD to also take into account the extra memory
allocated by my_malloc()
- Updated init_alloc_root() to only take MALLOC_OVERHEAD into account as
buffer size, not MALLOC_OVERHEAD + sizeof(USED_MEM).
- Reset mem_root->first_block_usage if and only if first block was used.
- Increase MEM_ROOT buffers sized used by my_load_defaults, plugin_init,
Create_tmp_table, allocate_table_share, TABLE and TABLE_SHARE.
This decreases number of malloc calls during queries.
- Use a small buffer for THD->main_mem_root in THD::THD. This avoids
multiple malloc() call for new connections.
I tried the above changes on a complex select query with 12 tables.
The following shows the number of extra allocations that where used
to increase the size of the MEM_ROOT buffers.
Original code:
- Connection to MariaDB: 9 allocations
- First query run: 146 allocations
- Second query run: 24 allocations
Max memory allocated for thd when using with heap table: 61,262,408
Max memory allocated for thd when using Aria tmp table: 419,464
After changes:
Connection to MariaDB: 0 allocations
- First run: 25 allocations
- Second run: 7 allocations
Max memory allocated for thd when using with heap table: 61,347,424
Max memory allocated for thd when using Aria table: 529,168
The new code uses slightly more memory, but avoids memory fragmentation
and is slightly faster thanks to much fewer calls to malloc().
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
The cause of the crash was that test was setting
aria_sort_buffer_size to MAX_LONG_LONG, which caused an overflow in
my_malloc() when trying to allocate the buffer + 8 bytes.
Fixed by reducing max size of sort_buffer for Aria and MyISAM
Other things:
- Added code in maria_repair_parallell() to not allocate a big sort buffer
for small files.
- Updated size of minumim sort buffer in Aria
The test case was setting aria_sort_buffer_size to MAX_ULONGLONG-1
which was not handled gracefully by my_malloc() or safemalloc().
Fixed by ensuring that the malloc functions returns 0 if the size
is too big.
I also added some protection to Aria repair:
- Limit sort_buffer_size to 16G (after that a bigger sort buffer will
not help that much anyway)
- Limit sort_buffer_size also according to sort file size. This will
help by not allocating less memory if someone sets the buffer size too
high.
This allows one to run the test suite even if any of the following
options are changed:
- character-set-server
- collation-server
- join-cache-level
- log-basename
- max-allowed-packet
- optimizer-switch
- query-cache-size and query-cache-type
- skip-name-resolve
- table-definition-cache
- table-open-cache
- Some innodb options
etc
Changes:
- Don't print out the value of system variables as one can't depend on
them to being constants.
- Don't set global variables to 'default' as the default may not
be the same as the test was started with if there was an additional
option file. Instead save original value and reset it at end of test.
- Test that depends on the latin1 character set should include
default_charset.inc or set the character set to latin1
- Test that depends on the original optimizer switch, should include
default_optimizer_switch.inc
- Test that depends on the value of a specific system variable should
set it in the test (like optimizer_use_condition_selectivity)
- Split subselect3.test into subselect3.test and subselect3.inc to
make it easier to set and reset system variables.
- Added .opt files for test that required specfic options that could
be changed by external configuration files.
- Fixed result files in rockdsb & tokudb that had not been updated for
a while.
MDEV-19585 Assertion with S3 table and flush_tables
The limit has to be increased so that MariaDB can create system tables.
It should not have any notable impact on performance.
There should not be any notable performance differences between 1K and 4K,
especially for temporary tables. In most cases using bigger blocks is also
faster (with the possible exception of doing key reads of not fixed length
keys).