1
0
mirror of https://github.com/MariaDB/server.git synced 2025-08-08 11:22:35 +03:00
Commit Graph

355 Commits

Author SHA1 Message Date
Sergei Petrunia
c7fe8e51de Merge 10.11 into 11.0 2023-04-17 16:50:01 +03:00
Marko Mäkelä
a009280e60 Merge 10.9 into 10.10 2023-04-14 12:24:14 +03:00
Marko Mäkelä
1d1e0ab2cc Merge 10.6 into 10.8 2023-04-12 15:50:08 +03:00
Marko Mäkelä
5bada1246d Merge 10.5 into 10.6 2023-04-11 16:15:19 +03:00
Oleksandr Byelkin
ac5a534a4c Merge remote-tracking branch '10.4' into 10.5 2023-03-31 21:32:41 +02:00
Marko Mäkelä
7a834d6248 Merge 10.11 into 11.0 2023-02-28 13:14:08 +02:00
Marko Mäkelä
f14d9fa09a Merge 10.9 into 10.10 2023-02-28 10:43:29 +02:00
Marko Mäkelä
6ac44ac3ab Merge 10.6 into 10.8 2023-02-28 10:36:17 +02:00
Marko Mäkelä
3e2ad0e918 Merge 10.5 into 10.6 2023-02-27 13:17:35 +02:00
Marko Mäkelä
0de3be8cfd MDEV-30671 InnoDB undo log truncation fails to wait for purge of history
It is not safe to invoke trx_purge_free_segment() or execute
innodb_undo_log_truncate=ON before all undo log records in
the rollback segment has been processed.

A prominent failure that would occur due to premature freeing of
undo log pages is that trx_undo_get_undo_rec() would crash when
trying to copy an undo log record to fetch the previous version
of a record.

If trx_undo_get_undo_rec() was not invoked in the unlucky time frame,
then the symptom would be that some committed transaction history is
never removed. This would be detected by CHECK TABLE...EXTENDED that
was impleented in commit ab0190101b.
Such a garbage collection leak should be possible even when using
innodb_undo_log_truncate=OFF, just involving trx_purge_free_segment().

trx_rseg_t::needs_purge: Change the type from Boolean to a transaction
identifier, noting the most recent non-purged transaction, or 0 if
everything has been purged. On transaction start, we initialize this
to 1 more than the transaction start ID. On recovery, the field may be
adjusted to the transaction end ID (TRX_UNDO_TRX_NO) if it is larger.

The field TRX_UNDO_NEEDS_PURGE becomes write-only; only some debug
assertions that would validate the value. The field reflects the old
inaccurate Boolean field trx_rseg_t::needs_purge.

trx_undo_mem_create_at_db_start(), trx_undo_lists_init(),
trx_rseg_mem_restore(): Remove the parameter max_trx_id.
Instead, store the maximum in trx_rseg_t::needs_purge,
where trx_rseg_array_init() will find it.

trx_purge_free_segment(): Contiguously hold a lock on
trx_rseg_t to prevent any concurrent allocation of undo log.

trx_purge_truncate_rseg_history(): Only invoke trx_purge_free_segment()
if the rollback segment is empty and there are no pending transactions
associated with it.

trx_purge_truncate_history(): Only proceed with innodb_undo_log_truncate=ON
if trx_rseg_t::needs_purge indicates that all history has been purged.

Tested by: Matthias Leich
2023-02-24 14:24:44 +02:00
Thirunarayanan Balathandayuthapani
81faf41786 MDEV-30597 Assertion `flag == 1' failed in row_build_index_entry_low
- InnoDB tries to build the previous version of the record for
the virtual index, but the undo log record doesn't contain
virtual column information. This leads to assert failure while
building the tuple.
2023-02-14 14:28:27 +05:30
Monty
727491b72a Added test cases for preceding test
This includes all test changes from
"Changing all cost calculation to be given in milliseconds"
and forwards.

Some of the things that caused changes in the result files:

- As part of fixing tests, I added 'echo' to some comments to be able to
  easier find out where things where wrong.
- MATERIALIZED has now a higher cost compared to X than before. Because
  of this some MATERIALIZED types have changed to DEPENDEND SUBQUERY.
  - Some test cases that required MATERIALIZED to repeat a bug was
    changed by adding more rows to force MATERIALIZED to happen.
- 'Filtered' in SHOW EXPLAIN has in many case changed from 100.00 to
  something smaller. This is because now filtered also takes into
  account the smallest possible ref access and filters, even if they
  where not used. Another reason for 'Filtered' being smaller is that
  we now also take into account implicit filtering done for subqueries
  using FIRSTMATCH.
  (main.subselect_no_exists_to_in)
  This is caluculated in best_access_path() and stored in records_out.
- Table orders has changed because more accurate costs.
- 'index' and 'ALL' for small tables has changed to use 'range' or
   'ref' because of optimizer_scan_setup_cost.
- index can be changed to 'range' as 'range' optimizer assumes we don't
  have to read the blocks from disk that range optimizer has already read.
  This can be confusing in the case where there is no obvious where clause
  but instead there is a hidden 'key_column > NULL' added by the optimizer.
  (main.subselect_no_exists_to_in)
- Scan on primary clustered key does not report 'Using Index' anymore
  (It's a table scan, not an index scan).
- For derived tables, the number of rows is now 100 instead of 2,
  which can be seen in EXPLAIN.
- More tests have "Using index for group by" as the cost of this
  optimization is now more correct (lower).
- A primary key could be preferred for a normal key, even if it would
  access more rows, as it's faster to do 1 lokoup and 3 'index_next' on a
  clustered primary key than one lookup trough a secondary.
  (main.stat_tables_innodb)

Notes:

- There was a 4.7% more calls to best_extension_by_limited_search() in
  the main.greedy_optimizer test.  However examining the test results
  it looked that the plans where slightly better (eq_ref where more
  chained together) so I assume this is ok.
- I have verified a few test cases where there was notable/unexpected
  changes in the plan and in all cases the new optimizer plans where
  faster.  (main.greedy_optimizer and some others)
2023-02-03 00:00:35 +03:00
Monty
b6215b9b20 Update row and key fetch cost models to take into account data copy costs
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.

The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path().  TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.

The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.

When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.

To remedy the above, the following key & row fetch related costs
has been added:

- The cost of fetching and using a row is now split into different costs:
  - key + Row fetch cost (as before) but multiplied with the variable
  'optimizer_cache_cost' (default to 0.5). This allows the user to
  tell the optimizer the likehood of finding the key and row in the
  engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
  sql layer or creating a row from the join_cache to the record
  buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
  the engine to the SQL layer. This is used when we calculate the cost
  index only reads. It makes index scans more expensive than before if
  they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
  This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
  when doing a index scan and comparing the rowid to the filter.
  Before this cost was assumed to be 0.

All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other.  There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.

To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
  account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
  ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
  TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
  into account.  This is used with filesort where we don't need
  to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
  optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
  KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
  optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
  KEY_COPY_COST & TIME_FOR_COMPARE.

I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
  temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
  table.

When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.

Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.

In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).

The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.

Detailed list of changes:

- Calculate index_only_cost consistently and correctly for all scan
  and ref accesses. The row fetch_cost and index_only_cost now
  takes into account clustered keys, covered keys and index
  only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
  similar costs. This is bases on the assumption that data is more
  often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
  TIME_FOR_COMPARE. Now all scan costs takes this into
  account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
  adjusting this on can reduce or increase the cost of index or direct
  record lookups. The effect of the default is that key lookups is now
  a bit cheaper than before. See usage of 'optimizer_cache_cost' in
  handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
  which produced a wrong cost when index scan was used. Changed
  JOIN_TAB:::scan_time() to take into consideration clustered and
  covered keys. The values are now cached and we only have to call
  this function once. Other calls are changed to use the cached
  values.  Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
  more close to 'range' calculations. The cost is now lower than
  before for small data sets and higher for large data sets as we take
  into account how many keys are read (main.opt_trace_selectivity,
  main.limit_rows_examined).
- Ensured that index_scan_cost() ==
  range(scan_of_all_rows_in_table_using_one_range) +
  MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
  is choice of doing a full index scan and a range-index scan over
  almost the whole table then index scan will be preferred (no
  range-read setup cost).  (innodb.innodb, main.show_explain,
  main.range)
  - Fixed the EQ_REF and REF takes into account clustered and covered
    keys.  This changes some plans to use covered or clustered indexes
    as these are much cheaper.  (main.subselect_mat_cost,
    main.state_tables_innodb, main.limit_rows_examined)
  - Rowid filter setup cost and filter compare cost now takes into
    account fetching and checking the rowid (KEY_NEXT_FIND_COST).
    (main.partition_pruning heap.heap_btree main.log_state)
  - Added KEY_NEXT_FIND_COST to
    Range_rowid_filter_cost_info::lookup_cost to account of the time
    to find and check the next key value against the container
  - Introduced ha_keyread_time(rows) that takes into account finding
    the next row and copying the key value to 'record'
    (KEY_COPY_COST).
  - Introduced ha_key_scan_time() for calculating an index scan over
    all rows.
  - Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
  - Added index_only_fetch_cost() as a convenience function to
    OPT_RANGE.
  - keyread_time() cost is slightly reduced to prefer shorter keys.
    (main.index_merge_myisam)
  - All of the above caused some index_merge combinations to be
    rejected because of cost (main.index_intersect). In some cases
    'ref' where replaced with index_merge because of the low
    cost calculation of get_sweep_read_cost().
  - Some index usage moved from PRIMARY to a covering index.
    (main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
  TIME_FOR_COMPARE into account.  See sql_select.cc::apply_filter().
  filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
  of filtered rows for ranges. The reason is that we want to ensure
  that 'range' is calculated similar to 'ref'. There is also more work
  needed to calculate the selectivity when using ranges and ranges and
  filtering.  This causes filtering column in EXPLAIN EXTENDED to be
  100.00 for some cases where range cannot use filtering.
  (main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
  finding the next row and copying the row from the engine to
  'record'. This causes costs of table scan to slightly increase and
  some test to changed their plan from ALL to RANGE or ALL to ref.
  (innodb.innodb_mysql, main.select_pkeycache)
  In a few cases where scan time of very small tables have lower cost
  than a ref or range, things changed from ref/range to ALL.
  (main.myisam, main.func_group, main.limit_rows_examined,
  main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
  but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
  materialization. This causes some very small tables to use scan
  instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
  accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
  to ensure that the 'Last_query_cost' status variable contains the
  same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
  handler::read_time(). This should have no effect as it's 1.0 by
  default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
  adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
  just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
  preceding tables (as have to restore all fields for all previous
  table combination when checking the where clause)
  The new cost added is:
  (row_combinations * ROW_COPY_COST * number_of_cached_tables).
  This increases the cost of join buffering in proportion of the
  number of tables in the join buffer. One effect is that full scans
  are now done earlier as the cost is then smaller.
  (main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
  caused wrong plans to be created; It prefered JT_EQ_REF even if it
  would be much more expensive than a full table scan. A related
  issue was that worst_seeks only applied to full lookup, not to
  clustered or index only lookups, which is not consistent. This
  caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
  typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
  caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
  - More costs, especially for materialization and index_merge.
  - Make lables more uniform
  - Fixed a lot of minor bugs
  - Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
  the cost did not take into account the number of row retrivals
  that has to be done or the cost of comparing the rows with the
  WHERE clause. The cost calculated would be just a fraction of
  the real cost. Now we calculate the cost as we do for ranges
  and 'ref'.
- 'Using index for group-by' is used a bit more than before as
  now take into account the WHERE clause cost when comparing
  with 'ref' and prefer the method with fewer row combinations.
  (main.group_min_max).

Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
  like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
  index when displaying 'Using index'. This caused some old plans to
  show 'Using index'.  (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
  updated, and the cost we compared with was not the one that was
  used.
- Fixed very wrong cost calculation for priority queues in
  check_if_pq_applicable(). (main.order_by now correctly uses priority
  queue)
- When calculating cost of EQ_REF or REF, we added the cost of
  comparing the WHERE clause with the found rows, not all row
  combinations. This made ref and eq_ref to be regarded way to cheap
  compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
  covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
  cost of a JT_REF key. This may be true for InnoDB primary key, but
  not for other unique keys or other engines. Now we use handler
  function to calculate the cost, which allows us to handle
  consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
  enabled but still changed the 'keyread' variable (which is wrong).
  Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
  calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
  record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
  and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
  means that the cost for hash_joins more expensive than calculated
  in best_access_path (a difference of 10x * TIME_OF_COMPARE).
  This is fixed in the new code thanks to that we now include
  TIME_OF_COMPARE cost in 'read_time'.

Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
  (No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
  to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h

Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
  This is because the cost of doing a range fetch of lineitem(98 rows) is
  almost as big as the whole join of order,lineitem. The filtering will
  also ensure that we only have to do very small key fetches of the rows
  in lineitem.
- main.index_merge_myisam had a few changes where we are now using
  less keys for index_merge. This is because index scans are now more
  expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
  This ensures that it is up to date per statements.
  Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
  filesort into consideration when table scan is chosen.
  (main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
  on a table with 1 row will now use table scan instead of key lookup.

TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
  when there is a ref access but scan is chosen.
  For this we have to store the lowest known value for
  'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
  costs. This will fix tests like main.order_by_innodb,
  main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
  cost_for_index_read() if there where no quick keys. This will reduce
  the computed cost for ORDER BY with LIMIT in some cases.
  (main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
  of rows we have to read when considering using a index table scan to
  resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
  benefit of reading multiple rows from the same page.
2023-02-02 21:43:30 +03:00
Monty
6fa7451759 Adjust costs for doing index scan in cost_group_min_max()
The idea is that when doing a tree dive (once per group), we need to
compare key values, which is fast.  For each new group, we have to
compare the full where clause for the row.
Compared to original code, the cost of group_min_max() has slightly
increased which affects some test with only a few rows.
main.group_min_max and main.distinct have been modified to show the
effect of the change.

The patch also adjust the number of groups in case of quick selects:
- For simple WHERE clauses, ensure that we have at least as many groups
  as we have conditions on the used group-by key parts.
  The assumption is that each condition will create at least one group.
- Ensure that there are no more groups than rows found by quick_select

Test changes:
- For some small tables there has been a change of
  Using index for group-by -> Using index for group-by (scanning)
  Range -> Index and Using index for group-by -> Using index
2023-02-02 20:25:25 +03:00
Monty
87d4d7232c Limit calculated rows to the number of rows in the table
The result file changes are mainly that number of rows is one smaller
for some queries with DISTINCT or GROUP BY
2023-01-30 15:22:20 +02:00
Monty
c443dbff0e Ensure that test_quick_select doesn't return more rows than in the table
Other changes:
- In test_quick_select(), assume that if table->used_stats_records is 0
  then the table has 0 rows.
- Fixed prepare_simple_select() to populate table->used_stat_records
- Enusre that set_statistics_for_tables() doesn't cause used_stats_records
  to be 0 when using stat_tables.
- To get blackhole to work with replication, set stats.records to 2 so
  that test_quick_select() doesn't assume the table is empty.
2023-01-30 15:22:20 +02:00
Marko Mäkelä
cae5a0328b Merge 10.9 into 10.10 2023-01-10 15:06:25 +02:00
Marko Mäkelä
92c8d6f168 Merge 10.7 into 10.8
The MDEV-25004 test innodb_fts.versioning is omitted because ever since
commit 685d958e38 InnoDB would not allow
writes to a database where the redo log file ib_logfile0 is missing.
2023-01-10 14:42:50 +02:00
Marko Mäkelä
8356fb68c3 Merge 10.6 into 10.7 2023-01-04 14:52:25 +02:00
Marko Mäkelä
e441c32a0b Merge 10.5 into 10.6 2023-01-03 18:13:11 +02:00
Marko Mäkelä
8b9b4ab3f5 Merge 10.4 into 10.5 2023-01-03 17:08:42 +02:00
Marko Mäkelä
fb0808c450 Merge 10.3 into 10.4 2023-01-03 16:10:02 +02:00
Sergei Golubchik
f8adc47b69 MDEV-19071 Wrong results when using STDDEV_SAMP() and view 2023-01-02 00:04:03 +01:00
Marko Mäkelä
fa389b9098 Merge 10.9 into 10.10 2022-12-14 08:57:39 +02:00
Marko Mäkelä
d7a4ce3c80 Merge 10.7 into 10.8 2022-12-13 18:11:24 +02:00
Marko Mäkelä
25b91c3f13 Merge 10.6 into 10.7 2022-12-13 18:01:49 +02:00
Marko Mäkelä
a8a5c8a1b8 Merge 10.5 into 10.6 2022-12-13 16:58:58 +02:00
Marko Mäkelä
1dc2f35598 Merge 10.4 into 10.5 2022-12-13 14:39:18 +02:00
Marko Mäkelä
fdf43b5c78 Merge 10.3 into 10.4 2022-12-13 11:37:33 +02:00
Sergei Golubchik
ae53f684d3 MDEV-30016 Virtual columns do not support autoincrement columns
change vcol_upgrade test to use stored gcols
2022-12-02 16:19:13 +01:00
Sergei Golubchik
a6b327e90a cleanup: VCOL_NOT_VIRTUAL->VCOL_NEXTVAL
rename to stress that is a specific hack for Item_func_nextval
and should not be used for other items.

If a vcol uses Item_func_nextval, a corresponding table for the sequence
should be added to the prelocking list (in that sense NEXTVAL is not
simply a function, but more like a subquery), see add_internal_tables()
in DML_prelocking_strategy::handle_table(). At the moment it is only
implemented for DEFAULT, not for GENERATED ALWAYS AS, thus the
VCOL_NEXTVAL hack.
2022-12-02 16:19:13 +01:00
Oleksandr Byelkin
49a22c5897 Merge branch '10.9' into 10.10 2022-11-01 11:55:28 +01:00
Marko Mäkelä
e0421b7cc8 Merge 10.7 into 10.8 2022-11-01 08:50:28 +02:00
Daniel Black
e80acbbe91 Merge branch 10.6 into 10.7 2022-10-25 16:02:57 +11:00
Marko Mäkelä
ab0190101b MDEV-24402: InnoDB CHECK TABLE ... EXTENDED
Until now, the attribute EXTENDED of CHECK TABLE was ignored by InnoDB,
and InnoDB only counted the records in each index according
to the current read view. Unless the attribute QUICK was specified, the
function btr_validate_index() would be invoked to validate the B-tree
structure (the sibling and child links between index pages).

The EXTENDED check will not only count all index records according to the
current read view, but also ensure that any delete-marked records in the
clustered index are waiting for the purge of history, and that all
secondary index records point to a version of the clustered index record
that is waiting for the purge of history. In other words, no index may
contain orphan records. Normal MVCC reads and the non-EXTENDED version
of CHECK TABLE would ignore these orphans.

Unpurged records merely result in warnings (at most one per index),
not errors, and no indexes will be flagged as corrupted due to such
garbage. It will remain possible to SELECT data from such indexes or
tables (which will skip such records) or to rebuild the table to
reclaim some space.

We introduce purge_sys.end_view that will be (almost) a copy of
purge_sys.view at the end of a batch of purging committed transaction
history. It is not an exact copy, because if the size of a purge batch
is limited by innodb_purge_batch_size, some records that
purge_sys.view would allow to be purged will be left over for
subsequent batches.

The purge_sys.view is relevant in the purge of committed transaction
history, to determine if records are safe to remove. The new
purge_sys.end_view is relevant in MVCC operations and in
CHECK TABLE ... EXTENDED. It tells which undo log records are
safe to access (have not been discarded at the end of a purge batch).

purge_sys.clone_oldest_view<true>(): In trx_lists_init_at_db_start(),
clone the oldest read view similar to purge_sys_t::clone_end_view()
so that CHECK TABLE ... EXTENDED will not report bogus failures between
InnoDB restart and the completed purge of committed transaction history.

purge_sys_t::is_purgeable(): Replaces purge_sys_t::changes_visible()
in the case that purge_sys.latch will not be held by the caller.
Among other things, this guards access to BLOBs. It is not safe to
dereference any BLOBs of a delete-marked purgeable record, because
they may have already been freed.

purge_sys_t::view_guard::view(): Return a reference to purge_sys.view
that will be protected by purge_sys.latch, held by purge_sys_t::view_guard.

purge_sys_t::end_view_guard::view(): Return a reference to
purge_sys.end_view while it is protected by purge_sys.end_latch.
Whenever a thread needs to retrieve an older version of a clustered
index record, it will hold a page latch on the clustered index page
and potentially also on a secondary index page that points to the
clustered index page. If these pages contain purgeable records that
would be accessed by a currently running purge batch, the progress of
the purge batch would be blocked by the page latches. Hence, it is
safe to make a copy of purge_sys.end_view while holding an index page
latch, and consult the copy of the view to determine whether a record
should already have been purged.

btr_validate_index(): Remove a redundant check.

row_check_index_match(): Check if a secondary index record and a
version of a clustered index record match each other.

row_check_index(): Replaces row_scan_index_for_mysql().
Count the records in each index directly, duplicating the relevant
logic from row_search_mvcc(). Initialize check_table_extended_view
for CHECK ... EXTENDED while holding an index leaf page latch.
If we encounter an orphan record, the copy of purge_sys.end_view that
we make is safe for visibility checks, and trx_undo_get_undo_rec() will
check for the safety to access each undo log record. Should that check
fail, we should return DB_MISSING_HISTORY to report a corrupted index.
The EXTENDED check tries to match each secondary index record with
every available clustered index record version, by duplicating the logic
of row_vers_build_for_consistent_read() and invoking
trx_undo_prev_version_build() directly.

Before invoking row_check_index_match() on delete-marked clustered index
record versions, we will consult purge_sys.is_purgeable() in order to
avoid accessing freed BLOBs.

We will always check that the DB_TRX_ID or PAGE_MAX_TRX_ID does not
exceed the global maximum. Orphan secondary index records will be
flagged only if everything up to PAGE_MAX_TRX_ID has been purged.
We warn also about clustered index records whose nonzero DB_TRX_ID
should have been reset in purge or rollback.

trx_set_rw_mode(): Move an assertion from ReadView::set_creator_trx_id().

trx_undo_prev_version_build(): Remove two debug-only parameters,
and return an error code instead of a Boolean.

trx_undo_get_undo_rec(): Return a pointer to the undo log record,
or nullptr if one cannot be retrieved. Instead of consulting the
purge_sys.view, consult the purge_sys.end_view to determine which
records can be accessed.

trx_undo_get_rec_if_purgeable(): A variant of trx_undo_get_undo_rec()
that will consult purge_sys.view instead of purge_sys.end_view.

TRX_UNDO_CHECK_PURGEABILITY: A new parameter to
trx_undo_prev_version_build(), passed by row_vers_old_has_index_entry()
so that purge_sys.view instead of purge_sys.end_view will be consulted
to determine whether a secondary index record may be safely purged.

row_upd_changes_disowned_external(): Remove. This should be more
expensive than briefly latching purge_sys in trx_undo_prev_version_build()
(which may make use of transactional memory).

row_sel_reset_old_vers_heap(): New function, split from
row_sel_build_prev_vers_for_mysql().

row_sel_build_prev_vers_for_mysql(): Reorder some parameters
to simplify the call to row_sel_reset_old_vers_heap().

row_search_for_mysql(): Replaced with direct calls to row_search_mvcc().

sel_node_get_nth_plan(): Define inline in row0sel.h

open_step(): Define at the call site, in simplified form.

sel_node_reset_cursor(): Merged with the only caller open_step().
---
ReadViewBase::check_trx_id_sanity(): Remove.
Let us handle "future" DB_TRX_ID in a more meaningful way:

row_sel_clust_sees(): Return DB_SUCCESS if the record is visible,
DB_SUCCESS_LOCKED_REC if it is invisible, and DB_CORRUPTION if
the DB_TRX_ID is in the future.

row_undo_mod_must_purge(), row_undo_mod_clust(): Silently ignore
corrupted DB_TRX_ID. We are in ROLLBACK, and we should have noticed
that corruption when we were about to modify the record in the first
place (leading us to refuse the operation).

row_vers_build_for_consistent_read(): Return DB_CORRUPTION if
DB_TRX_ID is in the future.

Tested by: Matthias Leich
Reviewed by: Vladislav Lesin
2022-10-21 10:02:54 +03:00
Oleksandr Byelkin
1d7e4301cc Merge branch '10.9' into 10.10 2022-10-17 16:15:40 +02:00
Oleksandr Byelkin
f3fddc1b4a Merge branch '10.7' into 10.8 2022-10-17 08:44:12 +02:00
Oleksandr Byelkin
ec2b30e736 Merge branch '10.6' into 10.7 2022-10-16 21:40:33 +02:00
Oleksandr Byelkin
822694bd56 Merge branch '10.5' into 10.6 2022-10-15 23:47:33 +02:00
Marko Mäkelä
66e44afd94 Merge 10.4 into 10.5 2022-10-13 17:05:30 +03:00
Marko Mäkelä
f404911557 Merge 10.3 into 10.4 2022-10-13 16:50:26 +03:00
Marko Mäkelä
d66f6f0cb4 Merge 10.9 into 10.10 2022-10-13 10:57:21 +03:00
Marko Mäkelä
618d820646 Merge 10.7 into 10.8 2022-10-13 10:42:41 +03:00
Marko Mäkelä
588efca237 Merge 10.6 into 10.7 2022-10-13 10:05:29 +03:00
Nikita Malyavin
128356b4b1 MDEV-29753 An error is wrongly reported during INSERT with vcol index
See also commits aa8a31da and 64678c for a Bug #22990029 fix.

In this scenario INSERT chose to check if delete unmarking is available for
a just deleted record. To build an update vector, it needed to calculate
the vcols as well. Since this INSERT was not IGNORE-flagged, recalculation
failed.

Solutiuon: temporarily set abort_on_warning=true, while calculating the
column for delete-unmarked insert.
2022-10-12 20:49:45 +03:00
Nikita Malyavin
3cd2c1e8b6 MDEV-29299 SELECT from table with vcol index reports warning
As of now innodb does not store trx_id for each record in secondary index.
The idea behind is following: let us store only per-page max_trx_id, and
delete-mark the records when they are deleted/updated.

If the read starts, it rememders the lowest id of currently active
transaction. Innodb refers to it as trx->read_view->m_up_limit_id.
See also ReadView::open.

When the page is fetched, its max_trx_id is compared to m_up_limit_id.
If the value is lower, and the secondary index record is not delete-marked,
then this page is just safe to read as is. Else, a clustered index could be
needed ato access. See page_get_max_trx_id call in row_search_mvcc, and the
corresponding switch (row_search_idx_cond_check(...)) below.

Virtual columns are required to be updated in case if the record was
delete-marked. The motivation behind it is documented in
Row_sel_get_clust_rec_for_mysql::operator() near
row_sel_sec_rec_is_for_clust_rec call.

This was basically a description why virtual column computation can
normally happen during SELECT, and, generally, a vcol index access.

Sometimes stats tables are updated by innodb. This starts a new
transaction, and it can happen that it didn't finish to the moment of
SELECT execution, forcing virtual columns recomputation. If the result was
a something that normally outputs a warning, like division by zero, then
it could be outputted in a racy manner.

The solution is to suppress the warnings when a column is computed
for the described purpose.
ignore_wrnings argument is added innobase_get_computed_value.
Currently, it is only true for a call from
row_sel_sec_rec_is_for_clust_rec.
2022-10-12 20:49:45 +03:00
Marko Mäkelä
6dc157f8a6 Merge 10.5 into 10.6 2022-10-06 09:22:39 +03:00
Marko Mäkelä
de078e060e Merge 10.4 into 10.5 2022-10-06 08:29:56 +03:00
Marko Mäkelä
65d0c57c1a Merge 10.3 into 10.4 2022-10-05 20:30:57 +03:00
Marko Mäkelä
1562b2c20b MDEV-29666 InnoDB fails to purge secondary index records when indexed virtual columns exist
row_purge_get_partial(): Replaces trx_undo_rec_get_partial_row().
Also copy the purge_node_t::ref to the purge_node_t::row.
In this way, the clustered index key fields will always be
available, even if thanks to
commit d384ead0f0 (MDEV-14799)
they would no longer be repeated in the remaining part of the
undo log record.
2022-10-05 09:30:33 +03:00