(Variant 2)
Multi-table UPDATE ... ORDER BY ... LIMIT could update the wrong rows when
ORDER BY was resolved by Using temporary + Using filesort.
== Background: ref_pointer_array ==
join->order[->next*]->item point into join->ref_pointer_array, which
has pointers to the used Item objects.
This indirection is employed so that we can switch the ORDER BY expressions
from using the original Items to using the values of their "image" fields
in the temporary table.
The variant of ref_pointer_array that has pointers to temp table fields
is created when JOIN::make_aggr_tables_info() calls
change_refs_to_tmp_fields().
== The problem ==
The created array didn't match element-by-element the original
ref_pointer_array. When arrays were switched, ORDER BY elements started
to point to the wrong temp.table fields, causing the wrong sorting.
== The cause ==
The cause is JOIN::add_fields_for_current_rowid(). This function is
called for UPDATE statements to make the rowids of rows in the original
tables to be saved in the temporary tables.
It adds extra columns to the select list in table_fields argument.
However, select lists are organized in a way that extra elements must
be added *to the front* of the list, and then change_refs_to_tmp_fields()
will add extra fields *to the end* of ref_pointer_array.
So, add_fields_for_current_rowid() adds new fields to the back of
table_fields list. This caused change_refs_to_tmp_fields() to produce
ref_pointer_array slice with extra elements in the front, causing any
references through ref_pointer_array to come to the wrong values.
== The fix ==
Make JOIN::add_fields_for_current_rowid() add fields to the front of
the select list.
Heap tables are allocated blocks to store rows according to
my_default_record_cache (mapped to the server global variable
read_buffer_size).
This causes performance issues when the record length is big
(> 1000 bytes) and the my_default_record_cache is small.
Changed to instead split the default heap allocation to 1/16 of the
allowed space and not use my_default_record_cache anymore when creating
the heap. The allocation is also aligned to be just under a power of 2.
For some test that I have been running, which was using record length=633,
the speed of the query doubled thanks to this change.
Other things:
- Fixed calculation of max_records passed to hp_create() to take
into account padding between records.
- Updated calculation of memory needed by heap tables. Before we
did not take into account internal structures needed to access rows.
- Changed block sized for memory_table from 1 to 16384 to get less
fragmentation. This also avoids a problem where we need 1K
to manage index and row storage which was not counted for before.
- Moved heap memory usage to a separate test for 32 bit.
- Allocate all data blocks in heap in powers of 2. Change reported
memory usage for heap to reflect this.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
This bug could affect multi-update statements as well as single-table
update statements processed as multi-updates when the where condition
contained a range condition over a non-indexed varchar column. The
optimizer calculates selectivity of such range conditions using histograms.
For each range the buckets containing endpoints of the the range are
determined with a procedure that stores the values of the endpoints in the
space of the record buffer where values of the columns are usually stored.
For a range over a varchar column the value of a endpoint may exceed the
size of the buffer and in such case the value is stored with truncation.
This truncations cannot affect the result of the calculation of the range
selectivity as the calculation employes only the beginning of the value
string. However it can trigger generation of an unexpected error on this
truncation if an update statement is processed.
This patch prohibits truncation messages when selectivity of a range
condition is calculated for a non-indexed column.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This bug caused a crash of the server at the second execution of a stored
function that used DELETE or UPDATE statement if the first execution
of this function reported an error encountered after the prepare phase.
This happened because in such cases the executed DELETE/UPDATE statement
remained marked as prepared. As a result the second execution of SF missed
the prepare phase for the statement altogether and the statement could not
be executed properly.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This patch introduces a new way of handling UPDATE and DELETE commands at
the top level after the parsing phase. This new way of processing update
and delete statements can be seen in the implementation of the prepare()
and execute() methods from the new Sql_cmd_dml class. This class derived
from the Sql_cmd class can be considered as an interface class for processing
such commands as SELECT, INSERT, UPDATE, DELETE and other comands
manipulating data in tables.
With this patch processing of update and delete statements after parsing
proceeds by the following schema:
- precheck of the access rights is performed for the used tables
- the used tables are opened
- context analysis phase is performed for the statement
- the used tables are locked
- the statement is optimized and executed
- clean-up is performed for the statement
The implementation of the method Sql_cmd_dml::execute() adheres this schema.
The virtual functions of the class Sql_cmd_dml used for precheck of the
access rights, context analysis, optimization and execution allow to adjust
this schema for processing data manipulation statements of any types.
This schema of processing data manipulation statements is taken from the
current MySQL code. Moreover the definition the class Sql_cmd_dml introduced
in this patch is almost a full replica of such class in the existing MySQL.
However the implementation of the derived classes for update and delete
statements is quite different. This implementation employs the JOIN class
for all kinds of update and delete statements. It allows to perform main
bulk of context analysis actions by the function JOIN::prepare(). This
guarantees that characteristics and properties of the statement tree
discovered for optimization phase when doing context analysis are the same
for single-table and multi-table updates and deletes.
With this patch the following functions are gone:
mysql_prepare_update(), mysql_multi_update_prepare(),
mysql_update(), mysql_multi_update(),
mysql_prepare_delete(), mysql_multi_delete_prepare(), mysql_delete().
The code within these functions have been used as much as possible though.
The functions mysql_test_update() and mysql_test_delete() are also not
needed anymore. The method Sql_cmd_dml::prepare() serves processing
- update/delete statement
- PREPARE stmt FROM "<update/delete statement>"
- EXECUTE stmt when stmt is prepared from update/delete statement.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The MDEV-17262 commit 26432e49d3
was skipped. In Galera 4, the implementation would seem to require
changes to the streaming replication.
In the tests archive.rnd_pos main.profiling, disable_ps_protocol
for SHOW STATUS and SHOW PROFILE commands until MDEV-18974
has been fixed.