Do not attempt to produce "r_engine_stats" on the temporary (=work) tables.
These tables may be
- re-created during the query execution
- freed during the query execution (This is done e.g. in JOIN::cleanup(),
before we produce ANALYZE FORMAT=JSON output).
- (Also, make save_explain_data() functions not set handler_for_stats
to point to handler objects that do not have handler->handler_stats set.
If the storage engine is not collecting handler_stats, it will not have
them when we're producing ANALYZE FORMAT=JSON output, either).
ANALYZE FORMAT=JSON output now includes table.r_engine_stats which
has the engine statistics. Only non-zero members are printed.
Internally: EXPLAIN data structures Explain_table_acccess and
Explain_update now have handler* handler_for_stats pointer.
It is used to read statistics from handler_for_stats->handler_stats.
The following applies only to 10.9+, backport doesn't use it:
Explain data structures exist after the tables are closed. We avoid
walking invalid pointers using this:
- SQL layer calls Explain_query::notify_tables_are_closed() before
closing tables.
- After that call, printing of JSON output is disabled. Non-JSON output
can be printed but we don't access handler_for_stats when doing that.
The new statistics is enabled by adding the "engine", "innodb" or "full"
option to --log-slow-verbosity
Example output:
# Pages_accessed: 184 Pages_read: 95 Pages_updated: 0 Old_rows_read: 1
# Pages_read_time: 17.0204 Engine_time: 248.1297
Page_read_time is time doing physical reads inside a storage engine.
(Writes cannot be tracked as these are usually done in the background).
Engine_time is the time spent inside the storage engine for the full
duration of the read/write/update calls. It uses the same code as
'analyze statement' for calculating the time spent.
The engine statistics is done with a generic interface that should be
easy for any engine to use. It can also easily be extended to provide
even more statistics.
Currently only InnoDB has counters for Pages_% and Undo_% status.
Engine_time works for all engines.
Implementation details:
class ha_handler_stats holds all engine stats. This class is included
in handler and THD classes.
While a query is running, all statistics is updated in the handler. In
close_thread_tables() the statistics is added to the THD.
handler::handler_stats is a pointer to where statistics should be
collected. This is set to point to handler::active_handler_stats if
stats are requested. If not, it is set to 0.
handler_stats has also an element, 'active' that is 1 if stats are
requested. This is to allow engines to avoid doing any 'if's while
updating the statistics.
Cloned or partition tables have the pointer set to the base table if
status are requested.
There is a small performance impact when using --log-slow-verbosity=engine:
- All engine calls in 'select' will be timed.
- IO calls for InnoDB reads will be timed.
- Incrementation of counters are done on local variables and accesses
are inline, so these should have very little impact.
- Statistics has to be reset for each statement for the THD and each
used handler. This is only 40 bytes, which should be neglectable.
- For partition tables we have to loop over all partitions to update
the handler_status as part of table_init(). Can be optimized in the
future to only do this is log-slow-verbosity changes. For this to work
we have to update handler_status for all opened partitions and
also for all partitions opened in the future.
Other things:
- Added options 'engine' and 'full' to log-slow-verbosity.
- Some of the new files in the test suite comes from Percona server, which
has similar status information.
- buf_page_optimistic_get(): Do not increment any counter, since we are
only validating a pointer, not performing any buf_pool.page_hash lookup.
- Added THD argument to save_explain_data_intern().
- Switched arguments for save_explain_.*_data() to have
always THD first (generates better code as other functions also have THD
first).
optimizer implicitly assumed that if `a` in `a=b` is not NULL,
then it's safe to convert `a` to the type of `b` and search the
result in the index(b).
which is not always the case, as converting a non-null value
to a different type might produce NULL. And searching for NULL
in the index might find NULL there, so NULL will be equal to NULL,
making `a=b` behave as if it was `a<=>b`
The code in choose_best_splitting() assumed that the join prefix is
in join->positions[].
This is not necessarily the case. This function might be called when
the join prefix is in join->best_positions[], too.
Follow the approach from best_access_path(), which calls this function:
pass the current join prefix as an argument,
"const POSITION *join_positions" and use that.
EXPLAIN EXTENDED should always print the field item used in the left part
of an equality expression from the SET clause of an update statement as a
reference to table column.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The problem was that when JOIN_TAB::remove_duplicates() noticed there
can only be one possible row in the output, it adjusted limits but
didn't take into account any possible offset.
Fixed by not adjusting limit offset when setting one-row-limit.
When a query does implicit grouping and join operation produces an empty
result set, a NULL-complemented row combination is generated.
However, constant table fields still show non-NULL values.
What happens in the is that end_send_group() is called with a
const row but without any rows matching the WHERE clause.
This last part is shown by 'join->first_record' not being set.
This causes item->no_rows_in_result() to be called for all items to reset
all sum functions to their initial state. However fields are not set
to NULL.
The used fix is to produce NULL-complemented records for constant tables
as well. Also, reset the constant table's records back in case we're
in a subquery which may get re-executed.
An alternative fix would have item->no_rows_in_result() also work
with Item_field objects.
There is some other issues with the code:
- join->no_rows_in_result_called is used but never set.
- Tables that are used with group functions are not properly marked as
maybe_null, which is required if the table rows should be regarded as
null-complemented (not existing).
- The code that tries to detect if mixed_implicit_grouping should be set
didn't take into account all usage of fields and sum functions.
- Item_func::restore_to_before_no_rows_in_result() called the wrong
function.
- join->clear() does not use a table_map argument to clear_tables(),
which caused it to ignore constant tables.
- unclear_tables() does not correctly restore status to what is
was before clear_tables().
Main bug fix was to always use a table_map argument to clear_tables() and
always use join->clear() and clear_tables() together with unclear_tables().
Other fixes:
- Fixed Item_func::restore_to_before_no_rows_in_result()
- Set 'join->no_rows_in_result_called' when no_rows_in_result_set()
is called.
- Removed not used argument from setup_end_select_func().
- More code comments
- Ensure that end_send_group() modifies the same fields as are in the
result set.
- Changed return_zero_rows() to use pointers instead of references,
similar to the rest of the code.
Reviewer: Sergei Petrunia <sergey@mariadb.com>
The problem was trying to access JOIN_TAB::select which is set to NULL
when using the filesort. The correct way is accessing either
JOIN_TAB::select or JOIN_TAB::filesort->select depending on whether
the filesort is used.
This commit introduces member function JOIN_TAB::get_sql_select()
encapsulating that check so the code duplication is eliminated.
The new condition (s->table->quick_keys.is_set(best_key->key))
was added to best_access_path() to eliminate a Valgrind error.
The cause of that error was using TRASH_ALLOC(quick_key_parts)
instead of bzero(quick_key_parts); hence, accessing
s->table->quick_key_parts[best_key->key]) without prior checking
for quick_keys.is_set() might have caused reading "dirty" memory
EXPLAIN EXTENDED should always print the field item used in the left part
of an equality expression from the SET clause of an update statement as a
reference to table column.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The problem, introduced in patch for MDEV-26301:
When check_join_cache_usage() decides not to use join buffer, it must
adjust the access method accordingly. For BNL-H joins this means switching
from pseudo-"ref access"(with index=MAX_KEY) to some other access method.
Failing to do this will cause assertions down the line when code that is
not aware of BNL-H will try to initialize index use for ref access with
index=MAX_KEY.
The fix is to follow the regular code path to disable the join buffer for
the join_tab ("goto no_join_cache") instead of just returning from
check_join_cache_usage().