1
0
mirror of https://github.com/MariaDB/server.git synced 2025-08-07 00:04:31 +03:00

amd64 atomic ops

lock-free alloc (WL#3229), lock-free hash (WL#3230)
bit functions made inline


include/Makefile.am:
  lf.h added
mysys/Makefile.am:
  lf_hash.c lf_dynarray.c lf_alloc-pin.c
include/atomic/nolock.h:
  amd64 atomic ops
include/atomic/rwlock.h:
  s/rw_lock/mutex/g
include/atomic/x86-gcc.h:
  amd64 atomic ops
  try PAUSE
include/my_global.h:
  STATIC_INLINE
mysys/mf_keycache.c:
  make bit functions inline
mysys/my_atomic.c:
  STATIC_INLINE
mysys/my_bitmap.c:
  make bit functions inline
sql/ha_myisam.cc:
  make bit functions inline
sql/item_func.cc:
  make bit functions inline
include/my_atomic.h:
  STATIC_INLINE
mysys/my_bit.c:
  make bit functions inline
sql/sql_select.cc:
  make bit functions inline
storage/myisam/mi_create.c:
  make bit functions inline
storage/myisam/mi_test2.c:
  make bit functions inline
storage/myisam/myisamchk.c:
  make bit functions inline
mysys/my_init.c:
  thread_size moved to mysys
sql/mysql_priv.h:
  thread_size moved to mysys
sql/set_var.cc:
  thread_size moved to mysys
include/my_sys.h:
  thread_size moved to mysys
sql/mysqld.cc:
  thread_size moved to mysys
sql/sql_parse.cc:
  thread_size moved to mysys
sql/sql_test.cc:
  thread_size moved to mysys
include/lf.h:
  dylf_dynarray refactored to remove 65536 elements limit
mysys/lf_alloc-pin.c:
  dylf_dynarray refactored to remove 65536 elements limit
mysys/lf_dynarray.c:
  dylf_dynarray refactored to remove 65536 elements limit
mysys/lf_hash.c:
  dylf_dynarray refactored to remove 65536 elements limit
unittest/mysys/my_atomic-t.c:
  fix to commit (remove debug code)
This commit is contained in:
unknown
2006-08-10 19:19:47 +02:00
parent fe84903b15
commit cd876fb118
30 changed files with 1506 additions and 152 deletions

107
include/my_bit.h Normal file
View File

@@ -0,0 +1,107 @@
/*
Some useful bit functions
*/
#ifdef HAVE_INLINE
extern const char _my_bits_nbits[256];
extern const uchar _my_bits_reverse_table[256];
/*
Find smallest X in 2^X >= value
This can be used to divide a number with value by doing a shift instead
*/
STATIC_INLINE uint my_bit_log2(ulong value)
{
uint bit;
for (bit=0 ; value > 1 ; value>>=1, bit++) ;
return bit;
}
STATIC_INLINE uint my_count_bits(ulonglong v)
{
#if SIZEOF_LONG_LONG > 4
/* The following code is a bit faster on 16 bit machines than if we would
only shift v */
ulong v2=(ulong) (v >> 32);
return (uint) (uchar) (_my_bits_nbits[(uchar) v] +
_my_bits_nbits[(uchar) (v >> 8)] +
_my_bits_nbits[(uchar) (v >> 16)] +
_my_bits_nbits[(uchar) (v >> 24)] +
_my_bits_nbits[(uchar) (v2)] +
_my_bits_nbits[(uchar) (v2 >> 8)] +
_my_bits_nbits[(uchar) (v2 >> 16)] +
_my_bits_nbits[(uchar) (v2 >> 24)]);
#else
return (uint) (uchar) (_my_bits_nbits[(uchar) v] +
_my_bits_nbits[(uchar) (v >> 8)] +
_my_bits_nbits[(uchar) (v >> 16)] +
_my_bits_nbits[(uchar) (v >> 24)]);
#endif
}
STATIC_INLINE uint my_count_bits_ushort(ushort v)
{
return _my_bits_nbits[v];
}
/*
Next highest power of two
SYNOPSIS
my_round_up_to_next_power()
v Value to check
RETURN
Next or equal power of 2
Note: 0 will return 0
NOTES
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
(Orignal code public domain)
Comments shows how this works with 01100000000000000000000000001011
*/
STATIC_INLINE uint32 my_round_up_to_next_power(uint32 v)
{
v--; /* 01100000000000000000000000001010 */
v|= v >> 1; /* 01110000000000000000000000001111 */
v|= v >> 2; /* 01111100000000000000000000001111 */
v|= v >> 4; /* 01111111110000000000000000001111 */
v|= v >> 8; /* 01111111111111111100000000001111 */
v|= v >> 16; /* 01111111111111111111111111111111 */
return v+1; /* 10000000000000000000000000000000 */
}
STATIC_INLINE uint32 my_clear_highest_bit(uint32 v)
{
uint32 w=v >> 1;
w|= w >> 1;
w|= w >> 2;
w|= w >> 4;
w|= w >> 8;
w|= w >> 16;
return v & w;
}
STATIC_INLINE uint32 my_reverse_bits(uint key)
{
return
(_my_bits_reverse_table[ key & 255] << 24) |
(_my_bits_reverse_table[(key>> 8) & 255] << 16) |
(_my_bits_reverse_table[(key>>16) & 255] << 8) |
_my_bits_reverse_table[(key>>24) ];
}
#else
extern uint my_bit_log2(ulong value);
extern uint32 my_round_up_to_next_power(uint32 v);
uint32 my_clear_highest_bit(uint32 v);
uint32 my_reverse_bits(uint key);
extern uint my_count_bits(ulonglong v);
extern uint my_count_bits_ushort(ushort v);
#endif