mirror of
https://github.com/MariaDB/server.git
synced 2025-08-01 03:47:19 +03:00
WL#2985 "Partition Pruning":
- post-...-post review fixes - Added "integer range walking" that allows to do partition pruning for "a <=? t.field <=? b" by finding used partitions for a, a+1, a+2, ..., b-1, b.
This commit is contained in:
@ -274,3 +274,33 @@ id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE X p1,p2 ALL a NULL NULL NULL 4 Using where
|
||||
1 SIMPLE Y p1,p2 ref a a 4 test.X.a 2
|
||||
drop table t1;
|
||||
create table t1 (a int) partition by hash(a) partitions 20;
|
||||
insert into t1 values (1),(2),(3);
|
||||
explain partitions select * from t1 where a > 1 and a < 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p2 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where a >= 1 and a < 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p1,p2 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where a > 1 and a <= 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p2,p3 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where a >= 1 and a <= 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p1,p2,p3 ALL NULL NULL NULL NULL 3 Using where
|
||||
drop table t1;
|
||||
create table t1 (a int, b int)
|
||||
partition by list(a) subpartition by hash(b) subpartitions 20
|
||||
(
|
||||
partition p0 values in (0),
|
||||
partition p1 values in (1),
|
||||
partition p2 values in (2),
|
||||
partition p3 values in (3)
|
||||
);
|
||||
insert into t1 values (1,1),(2,2),(3,3);
|
||||
explain partitions select * from t1 where b > 1 and b < 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p0_sp2,p1_sp2,p2_sp2,p3_sp2 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p1_sp2,p2_sp2 ALL NULL NULL NULL NULL 3 Using where
|
||||
|
@ -209,7 +209,7 @@ create table t1 (a int not null, b int not null) partition by LIST (a+b) (
|
||||
partition p0 values in (12),
|
||||
partition p1 values in (14)
|
||||
);
|
||||
--error 1500
|
||||
--error ER_NO_PARTITION_FOR_GIVEN_VALUE
|
||||
insert into t1 values (10,1);
|
||||
|
||||
drop table t1;
|
||||
|
@ -247,5 +247,28 @@ explain partitions
|
||||
select * from t1 X, t1 Y where X.a = Y.a and (X.a=1 or X.a=2);
|
||||
|
||||
drop table t1;
|
||||
|
||||
# Tests for "short ranges"
|
||||
create table t1 (a int) partition by hash(a) partitions 20;
|
||||
insert into t1 values (1),(2),(3);
|
||||
explain partitions select * from t1 where a > 1 and a < 3;
|
||||
explain partitions select * from t1 where a >= 1 and a < 3;
|
||||
explain partitions select * from t1 where a > 1 and a <= 3;
|
||||
explain partitions select * from t1 where a >= 1 and a <= 3;
|
||||
drop table t1;
|
||||
|
||||
create table t1 (a int, b int)
|
||||
partition by list(a) subpartition by hash(b) subpartitions 20
|
||||
(
|
||||
partition p0 values in (0),
|
||||
partition p1 values in (1),
|
||||
partition p2 values in (2),
|
||||
partition p3 values in (3)
|
||||
);
|
||||
insert into t1 values (1,1),(2,2),(3,3);
|
||||
|
||||
explain partitions select * from t1 where b > 1 and b < 3;
|
||||
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
|
||||
|
||||
# No tests for NULLs in RANGE(monotonic_expr()) - they depend on BUG#15447
|
||||
# being fixed.
|
||||
|
160
sql/handler.h
160
sql/handler.h
@ -474,6 +474,8 @@ typedef struct {
|
||||
uint32 end_part;
|
||||
bool use_bit_array;
|
||||
} part_id_range;
|
||||
|
||||
|
||||
/**
|
||||
* An enum and a struct to handle partitioning and subpartitioning.
|
||||
*/
|
||||
@ -537,7 +539,109 @@ typedef bool (*get_part_id_func)(partition_info *part_info,
|
||||
uint32 *part_id);
|
||||
typedef uint32 (*get_subpart_id_func)(partition_info *part_info);
|
||||
|
||||
class partition_info :public Sql_alloc {
|
||||
|
||||
struct st_partition_iter;
|
||||
#define NOT_A_PARTITION_ID ((uint32)-1)
|
||||
|
||||
/*
|
||||
A "Get next" function for partition iterator.
|
||||
SYNOPSIS
|
||||
partition_iter_func()
|
||||
part_iter Partition iterator, you call only "iter.get_next(&iter)"
|
||||
|
||||
RETURN
|
||||
NOT_A_PARTITION_ID if there are no more partitions.
|
||||
[sub]partition_id of the next partition
|
||||
*/
|
||||
|
||||
typedef uint32 (*partition_iter_func)(st_partition_iter* part_iter);
|
||||
|
||||
|
||||
/*
|
||||
Partition set iterator. Used to enumerate a set of [sub]partitions
|
||||
obtained in partition interval analysis (see get_partitions_in_range_iter).
|
||||
|
||||
For the user, the only meaningful field is get_next, which may be used as
|
||||
follows:
|
||||
part_iterator.get_next(&part_iterator);
|
||||
|
||||
Initialization is done by any of the following calls:
|
||||
- get_partitions_in_range_iter-type function call
|
||||
- init_single_partition_iterator()
|
||||
- init_all_partitions_iterator()
|
||||
Cleanup is not needed.
|
||||
*/
|
||||
|
||||
typedef struct st_partition_iter
|
||||
{
|
||||
partition_iter_func get_next;
|
||||
|
||||
union {
|
||||
struct {
|
||||
uint32 start_part_num;
|
||||
uint32 end_part_num;
|
||||
};
|
||||
struct {
|
||||
longlong start_val;
|
||||
longlong end_val;
|
||||
};
|
||||
bool null_returned;
|
||||
};
|
||||
partition_info *part_info;
|
||||
} PARTITION_ITERATOR;
|
||||
|
||||
|
||||
/*
|
||||
Get an iterator for set of partitions that match given field-space interval
|
||||
|
||||
SYNOPSIS
|
||||
get_partitions_in_range_iter()
|
||||
part_info Partitioning info
|
||||
is_subpart
|
||||
min_val Left edge, field value in opt_range_key format.
|
||||
max_val Right edge, field value in opt_range_key format.
|
||||
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
||||
NO_MAX_RANGE.
|
||||
part_iter Iterator structure to be initialized
|
||||
|
||||
DESCRIPTION
|
||||
Functions with this signature are used to perform "Partitioning Interval
|
||||
Analysis". This analysis is applicable for any type of [sub]partitioning
|
||||
by some function of a single fieldX. The idea is as follows:
|
||||
Given an interval "const1 <=? fieldX <=? const2", find a set of partitions
|
||||
that may contain records with value of fieldX within the given interval.
|
||||
|
||||
The min_val, max_val and flags parameters specify the interval.
|
||||
The set of partitions is returned by initializing an iterator in *part_iter
|
||||
|
||||
NOTES
|
||||
There are currently two functions of this type:
|
||||
- get_part_iter_for_interval_via_walking
|
||||
- get_part_iter_for_interval_via_mapping
|
||||
|
||||
RETURN
|
||||
0 - No matching partitions, iterator not initialized
|
||||
1 - Some partitions would match, iterator intialized for traversing them
|
||||
-1 - All partitions would match, iterator not initialized
|
||||
*/
|
||||
|
||||
typedef int (*get_partitions_in_range_iter)(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_val, byte *max_val,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
|
||||
|
||||
/* Initialize the iterator to return a single partition with given part_id */
|
||||
inline void init_single_partition_iterator(uint32 part_id,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
|
||||
/* Initialize the iterator to enumerate all partitions */
|
||||
inline void init_all_partitions_iterator(partition_info *part_info,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
|
||||
class partition_info : public Sql_alloc
|
||||
{
|
||||
public:
|
||||
/*
|
||||
* Here comes a set of definitions needed for partitioned table handlers.
|
||||
@ -566,7 +670,7 @@ public:
|
||||
same in all subpartitions
|
||||
*/
|
||||
get_subpart_id_func get_subpartition_id;
|
||||
|
||||
|
||||
/* NULL-terminated array of fields used in partitioned expression */
|
||||
Field **part_field_array;
|
||||
/* NULL-terminated array of fields used in subpartitioned expression */
|
||||
@ -598,6 +702,39 @@ public:
|
||||
longlong *range_int_array;
|
||||
LIST_PART_ENTRY *list_array;
|
||||
};
|
||||
|
||||
/********************************************
|
||||
* INTERVAL ANALYSIS
|
||||
********************************************/
|
||||
/*
|
||||
Partitioning interval analysis function for partitioning, or NULL if
|
||||
interval analysis is not supported for this kind of partitioning.
|
||||
*/
|
||||
get_partitions_in_range_iter get_part_iter_for_interval;
|
||||
/*
|
||||
Partitioning interval analysis function for subpartitioning, or NULL if
|
||||
interval analysis is not supported for this kind of partitioning.
|
||||
*/
|
||||
get_partitions_in_range_iter get_subpart_iter_for_interval;
|
||||
|
||||
/*
|
||||
Valid iff
|
||||
get_part_iter_for_interval=get_part_iter_for_interval_via_walking:
|
||||
controls how we'll process "field < C" and "field > C" intervals.
|
||||
If the partitioning function F is strictly increasing, then for any x, y
|
||||
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
|
||||
we can perform partition pruning on the equivalent "F(field) < F(C)".
|
||||
|
||||
If the partitioning function not strictly increasing (it is simply
|
||||
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
|
||||
i.e. for interval "field < C" we can perform partition pruning for
|
||||
"F(field) <= F(C)".
|
||||
*/
|
||||
bool range_analysis_include_bounds;
|
||||
/********************************************
|
||||
* INTERVAL ANALYSIS ENDS
|
||||
********************************************/
|
||||
|
||||
char* part_info_string;
|
||||
|
||||
char *part_func_string;
|
||||
@ -681,6 +818,25 @@ public:
|
||||
|
||||
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
uint32 get_next_partition_id_range(struct st_partition_iter* part_iter);
|
||||
|
||||
inline void init_single_partition_iterator(uint32 part_id,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
part_iter->start_part_num= part_id;
|
||||
part_iter->end_part_num= part_id+1;
|
||||
part_iter->get_next= get_next_partition_id_range;
|
||||
}
|
||||
|
||||
inline
|
||||
void init_all_partitions_iterator(partition_info *part_info,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
part_iter->start_part_num= 0;
|
||||
part_iter->end_part_num= part_info->no_parts;
|
||||
part_iter->get_next= get_next_partition_id_range;
|
||||
}
|
||||
|
||||
/*
|
||||
Answers the question if subpartitioning is used for a certain table
|
||||
SYNOPSIS
|
||||
|
279
sql/opt_range.cc
279
sql/opt_range.cc
@ -2070,7 +2070,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Partition pruning starts
|
||||
* Partition pruning module
|
||||
****************************************************************************/
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
|
||||
@ -2159,10 +2159,6 @@ struct st_part_prune_param;
|
||||
struct st_part_opt_info;
|
||||
|
||||
typedef void (*mark_full_part_func)(partition_info*, uint32);
|
||||
typedef uint32 (*part_num_to_partition_id_func)(struct st_part_prune_param*,
|
||||
uint32);
|
||||
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
||||
bool include_endpoint);
|
||||
|
||||
/*
|
||||
Partition pruning operation context
|
||||
@ -2170,7 +2166,7 @@ typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
||||
typedef struct st_part_prune_param
|
||||
{
|
||||
RANGE_OPT_PARAM range_param; /* Range analyzer parameters */
|
||||
|
||||
|
||||
/***************************************************************
|
||||
Following fields are filled in based solely on partitioning
|
||||
definition and not modified after that:
|
||||
@ -2199,32 +2195,6 @@ typedef struct st_part_prune_param
|
||||
int last_part_partno;
|
||||
int last_subpart_partno; /* Same as above for supartitioning */
|
||||
|
||||
/*
|
||||
Function to be used to analyze non-singlepoint intervals (Can be pointer
|
||||
to one of two functions - for RANGE and for LIST types). NULL means
|
||||
partitioning type and/or expression doesn't allow non-singlepoint interval
|
||||
analysis.
|
||||
See get_list_array_idx_for_endpoint (or get_range_...) for description of
|
||||
what the function does.
|
||||
*/
|
||||
get_endpoint_func get_endpoint;
|
||||
|
||||
/* Maximum possible value that can be returned by get_endpoint function */
|
||||
uint32 max_endpoint_val;
|
||||
|
||||
/*
|
||||
For RANGE partitioning, part_num_to_part_id_range, for LIST partitioning,
|
||||
part_num_to_part_id_list. Just to avoid the if-else clutter.
|
||||
*/
|
||||
part_num_to_partition_id_func endpoints_walk_func;
|
||||
|
||||
/*
|
||||
If true, process "key < const" as "part_func(key) < part_func(const)",
|
||||
otherwise as "part_func(key) <= part_func(const)". Same for '>' and '>='.
|
||||
This is defined iff get_endpoint != NULL.
|
||||
*/
|
||||
bool force_include_bounds;
|
||||
|
||||
/*
|
||||
is_part_keypart[i] == test(keypart #i in partitioning index is a member
|
||||
used in partitioning)
|
||||
@ -2243,25 +2213,12 @@ typedef struct st_part_prune_param
|
||||
uint cur_part_fields;
|
||||
/* Same as cur_part_fields, but for subpartitioning */
|
||||
uint cur_subpart_fields;
|
||||
|
||||
/***************************************************************
|
||||
Following fields are used to store an 'iterator' that can be
|
||||
used to obtain a set of used partitions.
|
||||
**************************************************************/
|
||||
/*
|
||||
Start and end+1 partition "numbers". They can have two meanings depending
|
||||
of the value of part_num_to_part_id:
|
||||
part_num_to_part_id_range - numbers are partition ids
|
||||
part_num_to_part_id_list - numbers are indexes in part_info->list_array
|
||||
*/
|
||||
uint32 start_part_num;
|
||||
uint32 end_part_num;
|
||||
|
||||
/*
|
||||
A function that should be used to convert two above "partition numbers"
|
||||
to partition_ids.
|
||||
*/
|
||||
part_num_to_partition_id_func part_num_to_part_id;
|
||||
/* Iterator to be used to obtain the "current" set of used partitions */
|
||||
PARTITION_ITERATOR part_iter;
|
||||
|
||||
/* Initialized bitmap of no_subparts size */
|
||||
MY_BITMAP subparts_bitmap;
|
||||
} PART_PRUNE_PARAM;
|
||||
|
||||
static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
|
||||
@ -2377,9 +2334,7 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
||||
prune_param.arg_stack_end= prune_param.arg_stack;
|
||||
prune_param.cur_part_fields= 0;
|
||||
prune_param.cur_subpart_fields= 0;
|
||||
prune_param.part_num_to_part_id= part_num_to_part_id_range;
|
||||
prune_param.start_part_num= 0;
|
||||
prune_param.end_part_num= prune_param.part_info->no_parts;
|
||||
init_all_partitions_iterator(part_info, &prune_param.part_iter);
|
||||
if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
|
||||
tree->keys[0]))))
|
||||
goto all_used;
|
||||
@ -2451,7 +2406,7 @@ end:
|
||||
format.
|
||||
*/
|
||||
|
||||
static void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
||||
void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
||||
{
|
||||
/* Do the same as print_key() does */
|
||||
if (field->real_maybe_null())
|
||||
@ -2512,19 +2467,6 @@ static void mark_full_partition_used_with_parts(partition_info *part_info,
|
||||
bitmap_set_bit(&part_info->used_partitions, start);
|
||||
}
|
||||
|
||||
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
|
||||
static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* ppar, uint32 num)
|
||||
{
|
||||
return num;
|
||||
}
|
||||
|
||||
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
|
||||
static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
|
||||
{
|
||||
return ppar->part_info->list_array[num].partition_id;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Find the set of used partitions for List<SEL_IMERGE>
|
||||
SYNOPSIS
|
||||
@ -2612,9 +2554,7 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
|
||||
ppar->arg_stack_end= ppar->arg_stack;
|
||||
ppar->cur_part_fields= 0;
|
||||
ppar->cur_subpart_fields= 0;
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= 0;
|
||||
ppar->end_part_num= ppar->part_info->no_parts;
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
if (-1 == (res |= find_used_partitions(ppar, (*ptree)->keys[0])))
|
||||
return -1;
|
||||
}
|
||||
@ -2683,58 +2623,29 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
|
||||
if (key_tree->type == SEL_ARG::KEY_RANGE)
|
||||
{
|
||||
if (partno == 0 && (NULL != ppar->get_endpoint))
|
||||
if (partno == 0 && (NULL != ppar->part_info->get_part_iter_for_interval))
|
||||
{
|
||||
/*
|
||||
Partitioning is done by RANGE|INTERVAL(monotonic_expr(fieldX)), and
|
||||
we got "const1 CMP fieldX CMP const2" interval
|
||||
we got "const1 CMP fieldX CMP const2" interval <-- psergey-todo: change
|
||||
*/
|
||||
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
|
||||
ppar->range_param.
|
||||
key_parts););
|
||||
/* Find minimum */
|
||||
if (key_tree->min_flag & NO_MIN_RANGE)
|
||||
ppar->start_part_num= 0;
|
||||
else
|
||||
res= ppar->part_info->
|
||||
get_part_iter_for_interval(ppar->part_info,
|
||||
FALSE,
|
||||
key_tree->min_value,
|
||||
key_tree->max_value,
|
||||
key_tree->min_flag | key_tree->max_flag,
|
||||
&ppar->part_iter);
|
||||
if (!res)
|
||||
goto go_right; /* res=0 --> no satisfying partitions */
|
||||
if (res == -1)
|
||||
{
|
||||
/*
|
||||
Store the interval edge in the record buffer, and call the
|
||||
function that maps the edge in table-field space to an edge
|
||||
in ordered-set-of-partitions (for RANGE partitioning) or
|
||||
indexes-in-ordered-array-of-list-constants (for LIST) space.
|
||||
*/
|
||||
store_key_image_to_rec(key_tree->field, key_tree->min_value,
|
||||
ppar->range_param.key_parts[0].length);
|
||||
bool include_endp= ppar->force_include_bounds ||
|
||||
!test(key_tree->min_flag & NEAR_MIN);
|
||||
ppar->start_part_num= ppar->get_endpoint(ppar->part_info, 1,
|
||||
include_endp);
|
||||
if (ppar->start_part_num == ppar->max_endpoint_val)
|
||||
{
|
||||
res= 0; /* No satisfying partitions */
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
//get a full range iterator
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
}
|
||||
|
||||
/* Find maximum, do the same as above but for right interval bound */
|
||||
if (key_tree->max_flag & NO_MAX_RANGE)
|
||||
ppar->end_part_num= ppar->max_endpoint_val;
|
||||
else
|
||||
{
|
||||
store_key_image_to_rec(key_tree->field, key_tree->max_value,
|
||||
ppar->range_param.key_parts[0].length);
|
||||
bool include_endp= ppar->force_include_bounds ||
|
||||
!test(key_tree->max_flag & NEAR_MAX);
|
||||
ppar->end_part_num= ppar->get_endpoint(ppar->part_info, 0,
|
||||
include_endp);
|
||||
if (ppar->start_part_num == ppar->end_part_num)
|
||||
{
|
||||
res= 0; /* No satisfying partitions */
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
}
|
||||
ppar->part_num_to_part_id= ppar->endpoints_walk_func;
|
||||
|
||||
/*
|
||||
Save our intent to mark full partition as used if we will not be able
|
||||
to obtain further limits on subpartitions
|
||||
@ -2743,6 +2654,42 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
goto process_next_key_part;
|
||||
}
|
||||
|
||||
if (partno == ppar->last_subpart_partno &&
|
||||
(NULL != ppar->part_info->get_subpart_iter_for_interval))
|
||||
{
|
||||
PARTITION_ITERATOR subpart_iter;
|
||||
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
|
||||
ppar->range_param.
|
||||
key_parts););
|
||||
res= ppar->part_info->
|
||||
get_subpart_iter_for_interval(ppar->part_info,
|
||||
TRUE,
|
||||
key_tree->min_value,
|
||||
key_tree->max_value,
|
||||
key_tree->min_flag | key_tree->max_flag,
|
||||
&subpart_iter);
|
||||
DBUG_ASSERT(res); /* We can't get "no satisfying subpartitions" */
|
||||
if (res == -1)
|
||||
return -1; /* all subpartitions satisfy */
|
||||
|
||||
uint32 subpart_id;
|
||||
bitmap_clear_all(&ppar->subparts_bitmap);
|
||||
while ((subpart_id= subpart_iter.get_next(&subpart_iter)) != NOT_A_PARTITION_ID)
|
||||
bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
|
||||
|
||||
/* Mark each partition as used in each subpartition. */
|
||||
uint32 part_id;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
||||
NOT_A_PARTITION_ID)
|
||||
{
|
||||
for (uint i= 0; i < ppar->part_info->no_subparts; i++)
|
||||
if (bitmap_is_set(&ppar->subparts_bitmap, i))
|
||||
bitmap_set_bit(&ppar->part_info->used_partitions,
|
||||
part_id * ppar->part_info->no_subparts + i);
|
||||
}
|
||||
goto go_right;
|
||||
}
|
||||
|
||||
if (key_tree->is_singlepoint())
|
||||
{
|
||||
pushed= TRUE;
|
||||
@ -2768,9 +2715,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
/* Rembember the limit we got - single partition #part_id */
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= part_id;
|
||||
ppar->end_part_num= part_id + 1;
|
||||
init_single_partition_iterator(part_id, &ppar->part_iter);
|
||||
|
||||
/*
|
||||
If there are no subpartitions/we fail to get any limit for them,
|
||||
@ -2780,7 +2725,8 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
goto process_next_key_part;
|
||||
}
|
||||
|
||||
if (partno == ppar->last_subpart_partno)
|
||||
if (partno == ppar->last_subpart_partno &&
|
||||
ppar->cur_subpart_fields == ppar->subpart_fields)
|
||||
{
|
||||
/*
|
||||
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
|
||||
@ -2796,12 +2742,12 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
uint32 subpart_id= part_info->get_subpartition_id(part_info);
|
||||
|
||||
/* Mark this partition as used in each subpartition. */
|
||||
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
|
||||
num++)
|
||||
uint32 part_id;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
||||
NOT_A_PARTITION_ID)
|
||||
{
|
||||
bitmap_set_bit(&part_info->used_partitions,
|
||||
ppar->part_num_to_part_id(ppar, num) *
|
||||
part_info->no_subparts + subpart_id);
|
||||
part_id * part_info->no_subparts + subpart_id);
|
||||
}
|
||||
res= 1; /* Some partitions were marked as used */
|
||||
goto pop_and_go_right;
|
||||
@ -2822,34 +2768,28 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
process_next_key_part:
|
||||
if (key_tree->next_key_part)
|
||||
res= find_used_partitions(ppar, key_tree->next_key_part);
|
||||
else
|
||||
else
|
||||
res= -1;
|
||||
|
||||
if (res == -1) /* Got "full range" for key_tree->next_key_part call */
|
||||
{
|
||||
if (set_full_part_if_bad_ret)
|
||||
{
|
||||
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
|
||||
num++)
|
||||
{
|
||||
ppar->mark_full_partition_used(ppar->part_info,
|
||||
ppar->part_num_to_part_id(ppar, num));
|
||||
}
|
||||
res= 1;
|
||||
}
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
if (set_full_part_if_bad_ret)
|
||||
{
|
||||
if (res == -1)
|
||||
{
|
||||
/* Got "full range" for subpartitioning fields */
|
||||
uint32 part_id;
|
||||
bool found= FALSE;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) != NOT_A_PARTITION_ID)
|
||||
{
|
||||
ppar->mark_full_partition_used(ppar->part_info, part_id);
|
||||
found= TRUE;
|
||||
}
|
||||
res= test(found);
|
||||
}
|
||||
/*
|
||||
Restore the "used partitions iterator" to the default setting that
|
||||
specifies iteration over all partitions.
|
||||
*/
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= 0;
|
||||
ppar->end_part_num= ppar->part_info->no_parts;
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
}
|
||||
|
||||
if (pushed)
|
||||
@ -2860,7 +2800,10 @@ pop_and_go_right:
|
||||
ppar->cur_part_fields-= ppar->is_part_keypart[partno];
|
||||
ppar->cur_subpart_fields-= ppar->is_subpart_keypart[partno];
|
||||
}
|
||||
|
||||
|
||||
if (res == -1)
|
||||
return -1;
|
||||
go_right:
|
||||
if (key_tree->right != &null_element)
|
||||
{
|
||||
if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
|
||||
@ -2967,38 +2910,6 @@ static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
|
||||
ppar->get_top_partition_id_func= part_info->get_partition_id;
|
||||
}
|
||||
|
||||
enum_monotonicity_info minfo;
|
||||
ppar->get_endpoint= NULL;
|
||||
if (part_info->part_expr &&
|
||||
(minfo= part_info->part_expr->get_monotonicity_info()) != NON_MONOTONIC)
|
||||
{
|
||||
/*
|
||||
ppar->force_include_bounds controls how we'll process "field < C" and
|
||||
"field > C" intervals.
|
||||
If the partitioning function F is strictly increasing, then for any x, y
|
||||
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
|
||||
we can perform partition pruning on the equivalent "F(field) < F(C)".
|
||||
|
||||
If the partitioning function not strictly increasing (it is simply
|
||||
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
|
||||
i.e. for interval "field < C" we can perform partition pruning for
|
||||
"F(field) <= F(C)".
|
||||
*/
|
||||
ppar->force_include_bounds= test(minfo == MONOTONIC_INCREASING);
|
||||
if (part_info->part_type == RANGE_PARTITION)
|
||||
{
|
||||
ppar->get_endpoint= get_partition_id_range_for_endpoint;
|
||||
ppar->endpoints_walk_func= part_num_to_part_id_range;
|
||||
ppar->max_endpoint_val= part_info->no_parts;
|
||||
}
|
||||
else if (part_info->part_type == LIST_PARTITION)
|
||||
{
|
||||
ppar->get_endpoint= get_list_array_idx_for_endpoint;
|
||||
ppar->endpoints_walk_func= part_num_to_part_id_list;
|
||||
ppar->max_endpoint_val= part_info->no_list_values;
|
||||
}
|
||||
}
|
||||
|
||||
KEY_PART *key_part;
|
||||
MEM_ROOT *alloc= range_par->mem_root;
|
||||
if (!total_parts ||
|
||||
@ -3011,11 +2922,19 @@ static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
|
||||
!(ppar->is_subpart_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
|
||||
total_parts)))
|
||||
return TRUE;
|
||||
|
||||
|
||||
if (ppar->subpart_fields)
|
||||
{
|
||||
uint32 *buf;
|
||||
uint32 bufsize= bitmap_buffer_size(ppar->part_info->no_subparts);
|
||||
if (!(buf= (uint32*)alloc_root(alloc, bufsize)))
|
||||
return TRUE;
|
||||
bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->no_subparts, FALSE);
|
||||
}
|
||||
range_par->key_parts= key_part;
|
||||
Field **field= (ppar->part_fields)? part_info->part_field_array :
|
||||
part_info->subpart_field_array;
|
||||
bool subpart_fields= FALSE;
|
||||
bool in_subpart_fields= FALSE;
|
||||
for (uint part= 0; part < total_parts; part++, key_part++)
|
||||
{
|
||||
key_part->key= 0;
|
||||
@ -3036,13 +2955,13 @@ static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
|
||||
key_part->image_type = Field::itRAW;
|
||||
/* We don't set key_parts->null_bit as it will not be used */
|
||||
|
||||
ppar->is_part_keypart[part]= !subpart_fields;
|
||||
ppar->is_subpart_keypart[part]= subpart_fields;
|
||||
ppar->is_part_keypart[part]= !in_subpart_fields;
|
||||
ppar->is_subpart_keypart[part]= in_subpart_fields;
|
||||
|
||||
if (!*(++field))
|
||||
{
|
||||
field= part_info->subpart_field_array;
|
||||
subpart_fields= TRUE;
|
||||
in_subpart_fields= TRUE;
|
||||
}
|
||||
}
|
||||
range_par->key_parts_end= key_part;
|
||||
|
@ -91,6 +91,21 @@ uint32 get_partition_id_linear_hash_sub(partition_info *part_info);
|
||||
uint32 get_partition_id_linear_key_sub(partition_info *part_info);
|
||||
#endif
|
||||
|
||||
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
|
||||
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
|
||||
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
|
||||
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
|
||||
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
static void set_up_range_analysis_info(partition_info *part_info);
|
||||
|
||||
/*
|
||||
A routine used by the parser to decide whether we are specifying a full
|
||||
@ -1603,8 +1618,8 @@ static void set_up_partition_func_pointers(partition_info *part_info)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
For linear hashing we need a mask which is on the form 2**n - 1 where
|
||||
2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
|
||||
@ -1811,6 +1826,7 @@ bool fix_partition_func(THD *thd, const char *name, TABLE *table)
|
||||
check_range_capable_PF(table);
|
||||
set_up_partition_key_maps(table, part_info);
|
||||
set_up_partition_func_pointers(part_info);
|
||||
set_up_range_analysis_info(part_info);
|
||||
result= FALSE;
|
||||
end:
|
||||
thd->set_query_id= save_set_query_id;
|
||||
@ -3489,7 +3505,7 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
|
||||
uint partition_id= 0;
|
||||
List_iterator<partition_element> it(part_info->partitions);
|
||||
|
||||
if (part_info->subpart_type != NOT_A_PARTITION)
|
||||
if (is_sub_partitioned(part_info))
|
||||
{
|
||||
partition_element *head_pe;
|
||||
while ((head_pe= it++))
|
||||
@ -3529,3 +3545,437 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************************
|
||||
* Partition interval analysis support
|
||||
***************************************************************************/
|
||||
|
||||
/*
|
||||
Setup partition_info::* members related to partitioning range analysis
|
||||
|
||||
SYNOPSIS
|
||||
set_up_partition_func_pointers()
|
||||
part_info Partitioning info structure
|
||||
|
||||
DESCRIPTION
|
||||
Assuming that passed partition_info structure already has correct values
|
||||
for members that specify [sub]partitioning type, table fields, and
|
||||
functions, set up partition_info::* members that are related to
|
||||
Partitioning Interval Analysis (see get_partitions_in_range_iter for its
|
||||
definition)
|
||||
|
||||
IMPLEMENTATION
|
||||
There are two available interval analyzer functions:
|
||||
(1) get_part_iter_for_interval_via_mapping
|
||||
(2) get_part_iter_for_interval_via_walking
|
||||
|
||||
They both have limited applicability:
|
||||
(1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
|
||||
func is a monotonic function.
|
||||
|
||||
(2) is applicable for
|
||||
"[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
|
||||
|
||||
If both are applicable, (1) is preferred over (2).
|
||||
|
||||
This function sets part_info::get_part_iter_for_interval according to
|
||||
this criteria, and also sets some auxilary fields that the function
|
||||
uses.
|
||||
*/
|
||||
|
||||
static void set_up_range_analysis_info(partition_info *part_info)
|
||||
{
|
||||
enum_monotonicity_info minfo;
|
||||
|
||||
/* Set the catch-all default */
|
||||
part_info->get_part_iter_for_interval= NULL;
|
||||
part_info->get_subpart_iter_for_interval= NULL;
|
||||
|
||||
/*
|
||||
Check if get_part_iter_for_interval_via_mapping() can be used for
|
||||
partitioning
|
||||
*/
|
||||
switch (part_info->part_type) {
|
||||
case RANGE_PARTITION:
|
||||
case LIST_PARTITION:
|
||||
minfo= part_info->part_expr->get_monotonicity_info();
|
||||
if (minfo != NON_MONOTONIC)
|
||||
{
|
||||
part_info->range_analysis_include_bounds=
|
||||
test(minfo == MONOTONIC_INCREASING);
|
||||
part_info->get_part_iter_for_interval=
|
||||
get_part_iter_for_interval_via_mapping;
|
||||
goto setup_subparts;
|
||||
}
|
||||
default:
|
||||
;
|
||||
}
|
||||
|
||||
/*
|
||||
Check get_part_iter_for_interval_via_walking() can be used for
|
||||
partitioning
|
||||
*/
|
||||
if (part_info->no_part_fields == 1)
|
||||
{
|
||||
Field *field= part_info->part_field_array[0];
|
||||
switch (field->type()) {
|
||||
case MYSQL_TYPE_TINY:
|
||||
case MYSQL_TYPE_SHORT:
|
||||
case MYSQL_TYPE_LONG:
|
||||
case MYSQL_TYPE_LONGLONG:
|
||||
part_info->get_part_iter_for_interval=
|
||||
get_part_iter_for_interval_via_walking;
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
setup_subparts:
|
||||
/*
|
||||
Check get_part_iter_for_interval_via_walking() can be used for
|
||||
subpartitioning
|
||||
*/
|
||||
if (part_info->no_subpart_fields == 1)
|
||||
{
|
||||
Field *field= part_info->subpart_field_array[0];
|
||||
switch (field->type()) {
|
||||
case MYSQL_TYPE_TINY:
|
||||
case MYSQL_TYPE_SHORT:
|
||||
case MYSQL_TYPE_LONG:
|
||||
case MYSQL_TYPE_LONGLONG:
|
||||
part_info->get_subpart_iter_for_interval=
|
||||
get_part_iter_for_interval_via_walking;
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
||||
bool include_endpoint);
|
||||
|
||||
/*
|
||||
Partitioning Interval Analysis: Initialize the iterator for "mapping" case
|
||||
|
||||
SYNOPSIS
|
||||
get_part_iter_for_interval_via_mapping()
|
||||
part_info Partition info
|
||||
is_subpart TRUE - act for subpartitioning
|
||||
FALSE - act for partitioning
|
||||
min_value minimum field value, in opt_range key format.
|
||||
max_value minimum field value, in opt_range key format.
|
||||
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
||||
NO_MAX_RANGE.
|
||||
part_iter Iterator structure to be initialized
|
||||
|
||||
DESCRIPTION
|
||||
Initialize partition set iterator to walk over the interval in
|
||||
ordered-list-of-partitions (for RANGE partitioning) or
|
||||
ordered-list-of-list-constants (for LIST partitioning) space.
|
||||
|
||||
IMPLEMENTATION
|
||||
This function is applied when partitioning is done by
|
||||
<RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
|
||||
t.field space into a sub-array of partition_info::range_int_array or
|
||||
partition_info::list_array (see get_partition_id_range_for_endpoint,
|
||||
get_list_array_idx_for_endpoint for details).
|
||||
|
||||
The function performs this interval mapping, and sets the iterator to
|
||||
traverse the sub-array and return appropriate partitions.
|
||||
|
||||
RETURN
|
||||
0 - No matching partitions (iterator not initialized)
|
||||
1 - Ok, iterator intialized for traversal of matching partitions.
|
||||
-1 - All partitions would match (iterator not initialized)
|
||||
*/
|
||||
|
||||
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
DBUG_ASSERT(!is_subpart);
|
||||
Field *field= part_info->part_field_array[0];
|
||||
uint32 max_endpoint_val;
|
||||
get_endpoint_func get_endpoint;
|
||||
uint field_len= field->pack_length_in_rec();
|
||||
|
||||
if (part_info->part_type == RANGE_PARTITION)
|
||||
{
|
||||
get_endpoint= get_partition_id_range_for_endpoint;
|
||||
max_endpoint_val= part_info->no_parts;
|
||||
part_iter->get_next= get_next_partition_id_range;
|
||||
}
|
||||
else if (part_info->part_type == LIST_PARTITION)
|
||||
{
|
||||
get_endpoint= get_list_array_idx_for_endpoint;
|
||||
max_endpoint_val= part_info->no_list_values;
|
||||
part_iter->get_next= get_next_partition_id_list;
|
||||
part_iter->part_info= part_info;
|
||||
}
|
||||
else
|
||||
DBUG_ASSERT(0);
|
||||
|
||||
/* Find minimum */
|
||||
if (flags & NO_MIN_RANGE)
|
||||
part_iter->start_part_num= 0;
|
||||
else
|
||||
{
|
||||
/*
|
||||
Store the interval edge in the record buffer, and call the
|
||||
function that maps the edge in table-field space to an edge
|
||||
in ordered-set-of-partitions (for RANGE partitioning) or
|
||||
index-in-ordered-array-of-list-constants (for LIST) space.
|
||||
*/
|
||||
store_key_image_to_rec(field, min_value, field_len);
|
||||
bool include_endp= part_info->range_analysis_include_bounds ||
|
||||
!test(flags & NEAR_MIN);
|
||||
part_iter->start_part_num= get_endpoint(part_info, 1, include_endp);
|
||||
if (part_iter->start_part_num == max_endpoint_val)
|
||||
return 0; /* No partitions */
|
||||
}
|
||||
|
||||
/* Find maximum, do the same as above but for right interval bound */
|
||||
if (flags & NO_MAX_RANGE)
|
||||
part_iter->end_part_num= max_endpoint_val;
|
||||
else
|
||||
{
|
||||
store_key_image_to_rec(field, max_value, field_len);
|
||||
bool include_endp= part_info->range_analysis_include_bounds ||
|
||||
!test(flags & NEAR_MAX);
|
||||
part_iter->end_part_num= get_endpoint(part_info, 0, include_endp);
|
||||
if (part_iter->start_part_num == part_iter->end_part_num)
|
||||
return 0; /* No partitions */
|
||||
}
|
||||
return 1; /* Ok, iterator initialized */
|
||||
}
|
||||
|
||||
|
||||
/* See get_part_iter_for_interval_via_walking for definition of what this is */
|
||||
#define MAX_RANGE_TO_WALK 10
|
||||
|
||||
|
||||
/*
|
||||
Partitioning Interval Analysis: Initialize iterator to walk integer interval
|
||||
|
||||
SYNOPSIS
|
||||
get_part_iter_for_interval_via_walking()
|
||||
part_info Partition info
|
||||
is_subpart TRUE - act for subpartitioning
|
||||
FALSE - act for partitioning
|
||||
min_value minimum field value, in opt_range key format.
|
||||
max_value minimum field value, in opt_range key format.
|
||||
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
||||
NO_MAX_RANGE.
|
||||
part_iter Iterator structure to be initialized
|
||||
|
||||
DESCRIPTION
|
||||
Initialize partition set iterator to walk over interval in integer field
|
||||
space. That is, for "const1 <=? t.field <=? const2" interval, initialize
|
||||
the iterator to do this:
|
||||
get partition id for t.field = const1, return it
|
||||
get partition id for t.field = const1+1, return it
|
||||
... t.field = const1+2, ...
|
||||
... ... ...
|
||||
... t.field = const2 ...
|
||||
|
||||
IMPLEMENTATION
|
||||
See get_partitions_in_range_iter for general description of interval
|
||||
analysis. We support walking over the following intervals:
|
||||
"t.field IS NULL"
|
||||
"c1 <=? t.field <=? c2", where c1 and c2 are finite.
|
||||
Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
|
||||
that is more tricky and I don't have time to do it right now.
|
||||
|
||||
Additionally we have these requirements:
|
||||
* number of values in the interval must be less then number of
|
||||
[sub]partitions, and
|
||||
* Number of values in the interval must be less then MAX_RANGE_TO_WALK.
|
||||
|
||||
The rationale behind these requirements is that if they are not met
|
||||
we're likely to hit most of the partitions and traversing the interval
|
||||
will only add overhead. So it's better return "all partitions used" in
|
||||
this case.
|
||||
|
||||
RETURN
|
||||
0 - No matching partitions, iterator not initialized
|
||||
1 - Some partitions would match, iterator intialized for traversing them
|
||||
-1 - All partitions would match, iterator not initialized
|
||||
*/
|
||||
|
||||
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
Field *field;
|
||||
uint total_parts;
|
||||
partition_iter_func get_next_func;
|
||||
if (is_subpart)
|
||||
{
|
||||
field= part_info->subpart_field_array[0];
|
||||
total_parts= part_info->no_subparts;
|
||||
get_next_func= get_next_subpartition_via_walking;
|
||||
}
|
||||
else
|
||||
{
|
||||
field= part_info->part_field_array[0];
|
||||
total_parts= part_info->no_parts;
|
||||
get_next_func= get_next_partition_via_walking;
|
||||
}
|
||||
|
||||
/* Handle the "t.field IS NULL" interval, it is a special case */
|
||||
if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
|
||||
*min_value && *max_value)
|
||||
{
|
||||
/*
|
||||
We don't have a part_iter->get_next() function that would find which
|
||||
partition "t.field IS NULL" belongs to, so find partition that contains
|
||||
NULL right here, and return an iterator over singleton set.
|
||||
*/
|
||||
uint32 part_id;
|
||||
field->set_null();
|
||||
if (is_subpart)
|
||||
{
|
||||
part_id= part_info->get_subpartition_id(part_info);
|
||||
init_single_partition_iterator(part_id, part_iter);
|
||||
return 1; /* Ok, iterator initialized */
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!part_info->get_partition_id(part_info, &part_id))
|
||||
{
|
||||
init_single_partition_iterator(part_id, part_iter);
|
||||
return 1; /* Ok, iterator initialized */
|
||||
}
|
||||
}
|
||||
return 0; /* No partitions match */
|
||||
}
|
||||
|
||||
if (flags & (NO_MIN_RANGE | NO_MAX_RANGE))
|
||||
return -1; /* Can't handle this interval, have to use all partitions */
|
||||
|
||||
/* Get integers for left and right interval bound */
|
||||
longlong a, b;
|
||||
uint len= field->pack_length_in_rec();
|
||||
store_key_image_to_rec(field, min_value, len);
|
||||
a= field->val_int();
|
||||
|
||||
store_key_image_to_rec(field, max_value, len);
|
||||
b= field->val_int();
|
||||
|
||||
a += test(flags & NEAR_MIN);
|
||||
b += test(!(flags & NEAR_MAX));
|
||||
uint n_values= b - a;
|
||||
|
||||
if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
|
||||
return -1;
|
||||
|
||||
part_iter->start_val= a;
|
||||
part_iter->end_val= b;
|
||||
part_iter->part_info= part_info;
|
||||
part_iter->get_next= get_next_func;
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
|
||||
|
||||
SYNOPSIS
|
||||
get_next_partition_id_list()
|
||||
part_iter Partition set iterator structure
|
||||
|
||||
DESCRIPTION
|
||||
This is implementation of PARTITION_ITERATOR::get_next() that returns
|
||||
[sub]partition ids in [min_partition_id, max_partition_id] range.
|
||||
|
||||
RETURN
|
||||
partition id
|
||||
NOT_A_PARTITION_ID if there are no more partitions
|
||||
*/
|
||||
|
||||
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
|
||||
{
|
||||
if (part_iter->start_part_num == part_iter->end_part_num)
|
||||
return NOT_A_PARTITION_ID;
|
||||
else
|
||||
return part_iter->start_part_num++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
PARTITION_ITERATOR::get_next implementation for LIST partitioning
|
||||
|
||||
SYNOPSIS
|
||||
get_next_partition_id_list()
|
||||
part_iter Partition set iterator structure
|
||||
|
||||
DESCRIPTION
|
||||
This is special implementation of PARTITION_ITERATOR::get_next() for
|
||||
LIST partitioning: it enumerates partition ids in
|
||||
part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
|
||||
|
||||
RETURN
|
||||
partition id
|
||||
NOT_A_PARTITION_ID if there are no more partitions
|
||||
*/
|
||||
|
||||
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
if (part_iter->start_part_num == part_iter->end_part_num)
|
||||
return NOT_A_PARTITION_ID;
|
||||
else
|
||||
return part_iter->part_info->list_array[part_iter->
|
||||
start_part_num++].partition_id;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
PARTITION_ITERATOR::get_next implementation: walk over integer interval
|
||||
|
||||
SYNOPSIS
|
||||
get_next_partition_via_walking()
|
||||
part_iter Partitioning iterator
|
||||
|
||||
DESCRIPTION
|
||||
|
||||
RETURN
|
||||
partition id
|
||||
NOT_A_PARTITION_ID if there are no more partitioning.
|
||||
*/
|
||||
|
||||
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
uint32 part_id;
|
||||
Field *field= part_iter->part_info->part_field_array[0];
|
||||
while (part_iter->start_val != part_iter->end_val)
|
||||
{
|
||||
field->store(part_iter->start_val, FALSE);
|
||||
part_iter->start_val++;
|
||||
if (!part_iter->part_info->get_partition_id(part_iter->part_info,
|
||||
&part_id))
|
||||
return part_id;
|
||||
}
|
||||
return NOT_A_PARTITION_ID;
|
||||
}
|
||||
|
||||
|
||||
/* Same as get_next_partition_via_walking, but for subpartitions */
|
||||
|
||||
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
uint32 part_id;
|
||||
Field *field= part_iter->part_info->subpart_field_array[0];
|
||||
if (part_iter->start_val == part_iter->end_val)
|
||||
return NOT_A_PARTITION_ID;
|
||||
field->store(part_iter->start_val, FALSE);
|
||||
part_iter->start_val++;
|
||||
return part_iter->part_info->get_subpartition_id(part_iter->part_info);
|
||||
}
|
||||
|
||||
|
@ -638,6 +638,11 @@ JOIN::optimize()
|
||||
TABLE_LIST *tbl;
|
||||
for (tbl= select_lex->leaf_tables; tbl; tbl= tbl->next_leaf)
|
||||
{
|
||||
/*
|
||||
If tbl->embedding!=NULL that means that this table is in the inner
|
||||
part of the nested outer join, and we can't do partition pruning
|
||||
(TODO: check if this limitation can be lifted)
|
||||
*/
|
||||
if (!tbl->embedding)
|
||||
{
|
||||
Item *prune_cond= tbl->on_expr? tbl->on_expr : conds;
|
||||
|
Reference in New Issue
Block a user