mirror of
https://github.com/MariaDB/server.git
synced 2025-07-29 05:21:33 +03:00
Semi-join optimizations code cleanup:
- Break down POSITION/advance_sj_state() into four classes representing potential semi-join strategies. - Treat all strategies uniformly (before, DuplicateWeedout was special as it was the catch-all strategy. Now, we're still relying on it to be the catch-all, but are able to function,e.g. with firstmatch=on,duplicate_weedout=off. - Update test results (checked)
This commit is contained in:
@ -323,8 +323,8 @@ WHERE Language='English' AND Percentage > 10 AND
|
|||||||
t2.Population > 100000);
|
t2.Population > 100000);
|
||||||
id select_type table type possible_keys key key_len ref rows Extra
|
id select_type table type possible_keys key key_len ref rows Extra
|
||||||
1 PRIMARY t1 range Population,Country Population 4 NULL 1 Using index condition; Rowid-ordered scan; Start temporary
|
1 PRIMARY t1 range Population,Country Population 4 NULL 1 Using index condition; Rowid-ordered scan; Start temporary
|
||||||
1 PRIMARY t2 eq_ref PRIMARY,Population PRIMARY 3 test.t1.Country 1 Using where
|
1 PRIMARY t2 eq_ref PRIMARY,Population PRIMARY 3 test.t1.Country 1 Using where; End temporary
|
||||||
1 PRIMARY t3 eq_ref PRIMARY,Percentage PRIMARY 33 test.t1.Country,const 1 Using index condition; Using where; End temporary
|
1 PRIMARY t3 eq_ref PRIMARY,Percentage PRIMARY 33 test.t1.Country,const 1 Using index condition; Using where
|
||||||
set optimizer_switch=@bug35674_save_optimizer_switch;
|
set optimizer_switch=@bug35674_save_optimizer_switch;
|
||||||
DROP TABLE t1,t2,t3;
|
DROP TABLE t1,t2,t3;
|
||||||
CREATE TABLE t1 (
|
CREATE TABLE t1 (
|
||||||
|
@ -332,8 +332,8 @@ WHERE Language='English' AND Percentage > 10 AND
|
|||||||
t2.Population > 100000);
|
t2.Population > 100000);
|
||||||
id select_type table type possible_keys key key_len ref rows Extra
|
id select_type table type possible_keys key key_len ref rows Extra
|
||||||
1 PRIMARY t1 range Population,Country Population 4 NULL 1 Using index condition; Rowid-ordered scan; Start temporary
|
1 PRIMARY t1 range Population,Country Population 4 NULL 1 Using index condition; Rowid-ordered scan; Start temporary
|
||||||
1 PRIMARY t2 eq_ref PRIMARY,Population PRIMARY 3 test.t1.Country 1 Using where; Using join buffer (flat, BKA join); Key-ordered Rowid-ordered scan
|
1 PRIMARY t2 eq_ref PRIMARY,Population PRIMARY 3 test.t1.Country 1 Using where; End temporary; Using join buffer (flat, BKA join); Key-ordered Rowid-ordered scan
|
||||||
1 PRIMARY t3 eq_ref PRIMARY,Percentage PRIMARY 33 test.t1.Country,const 1 Using index condition; Using where; End temporary; Using join buffer (incremental, BKA join); Key-ordered Rowid-ordered scan
|
1 PRIMARY t3 eq_ref PRIMARY,Percentage PRIMARY 33 test.t1.Country,const 1 Using index condition; Using where; Using join buffer (incremental, BKA join); Key-ordered Rowid-ordered scan
|
||||||
set optimizer_switch=@bug35674_save_optimizer_switch;
|
set optimizer_switch=@bug35674_save_optimizer_switch;
|
||||||
DROP TABLE t1,t2,t3;
|
DROP TABLE t1,t2,t3;
|
||||||
CREATE TABLE t1 (
|
CREATE TABLE t1 (
|
||||||
|
@ -2168,70 +2168,414 @@ bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables)
|
|||||||
See setup_semijoin_dups_elimination() for a description of what kinds of
|
See setup_semijoin_dups_elimination() for a description of what kinds of
|
||||||
join prefixes each strategy can handle.
|
join prefixes each strategy can handle.
|
||||||
*/
|
*/
|
||||||
|
bool is_multiple_semi_joins(POSITION *prefix, uint idx, table_map inner_tables)
|
||||||
|
{
|
||||||
|
for (int i= (int)idx; i >= 0; i--)
|
||||||
|
{
|
||||||
|
TABLE_LIST *emb_sj_nest;
|
||||||
|
if ((emb_sj_nest= prefix[i].table->emb_sj_nest))
|
||||||
|
{
|
||||||
|
if (inner_tables & emb_sj_nest->sj_inner_tables)
|
||||||
|
return !test(inner_tables == emb_sj_nest->sj_inner_tables);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
void advance_sj_state(JOIN *join, table_map remaining_tables,
|
|
||||||
const JOIN_TAB *new_join_tab, uint idx,
|
void advance_sj_state(JOIN *join, table_map remaining_tables, uint idx,
|
||||||
double *current_record_count, double *current_read_time,
|
double *current_record_count, double *current_read_time,
|
||||||
POSITION *loose_scan_pos)
|
POSITION *loose_scan_pos)
|
||||||
{
|
{
|
||||||
TABLE_LIST *emb_sj_nest;
|
|
||||||
POSITION *pos= join->positions + idx;
|
POSITION *pos= join->positions + idx;
|
||||||
remaining_tables &= ~new_join_tab->table->map;
|
const JOIN_TAB *new_join_tab= pos->table;
|
||||||
bool disable_jbuf= join->thd->variables.join_cache_level == 0;
|
Semi_join_strategy_picker *pickers[]=
|
||||||
|
{
|
||||||
|
&pos->firstmatch_picker,
|
||||||
|
&pos->loosescan_picker,
|
||||||
|
&pos->sjmat_picker,
|
||||||
|
&pos->dups_weedout_picker,
|
||||||
|
NULL,
|
||||||
|
};
|
||||||
|
|
||||||
pos->prefix_cost.convert_from_cost(*current_read_time);
|
|
||||||
pos->prefix_record_count= *current_record_count;
|
|
||||||
pos->sj_strategy= SJ_OPT_NONE;
|
|
||||||
|
|
||||||
pos->prefix_dups_producing_tables= join->cur_dups_producing_tables;
|
|
||||||
|
|
||||||
/* We're performing optimization inside SJ-Materialization nest */
|
|
||||||
if (join->emb_sjm_nest)
|
if (join->emb_sjm_nest)
|
||||||
{
|
{
|
||||||
pos->invalidate_firstmatch_prefix();
|
/*
|
||||||
pos->first_loosescan_table= MAX_TABLES;
|
We're performing optimization inside SJ-Materialization nest:
|
||||||
pos->dupsweedout_tables= 0;
|
- there are no other semi-joins inside semi-join nests
|
||||||
pos->sjm_scan_need_tables= 0;
|
- attempts to build semi-join strategies here will confuse
|
||||||
|
the optimizer, so bail out.
|
||||||
|
*/
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Initialize the state or copy it from prev. tables */
|
/*
|
||||||
|
Update join->cur_sj_inner_tables (Used by FirstMatch in this function and
|
||||||
|
LooseScan detector in best_access_path)
|
||||||
|
*/
|
||||||
|
remaining_tables &= ~new_join_tab->table->map;
|
||||||
|
pos->prefix_dups_producing_tables= join->cur_dups_producing_tables;
|
||||||
|
TABLE_LIST *emb_sj_nest;
|
||||||
|
if ((emb_sj_nest= new_join_tab->emb_sj_nest))
|
||||||
|
{
|
||||||
|
/// join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
|
||||||
|
join->cur_dups_producing_tables |= emb_sj_nest->sj_inner_tables;
|
||||||
|
|
||||||
|
/* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
|
||||||
|
/// if (!(remaining_tables &
|
||||||
|
/// emb_sj_nest->sj_inner_tables & ~new_join_tab->table->map))
|
||||||
|
/// join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
|
||||||
|
}
|
||||||
|
|
||||||
|
Semi_join_strategy_picker **strategy;
|
||||||
if (idx == join->const_tables)
|
if (idx == join->const_tables)
|
||||||
{
|
{
|
||||||
pos->invalidate_firstmatch_prefix();
|
/* First table, initialize pickers */
|
||||||
pos->first_loosescan_table= MAX_TABLES;
|
for (strategy= pickers; *strategy != NULL; strategy++)
|
||||||
pos->dupsweedout_tables= 0;
|
(*strategy)->set_empty();
|
||||||
pos->sjm_scan_need_tables= 0;
|
pos->inner_tables_handled_with_other_sjs= 0;
|
||||||
LINT_INIT(pos->sjm_scan_last_inner);
|
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
// FirstMatch
|
for (strategy= pickers; *strategy != NULL; strategy++)
|
||||||
pos->first_firstmatch_table=
|
{
|
||||||
(pos[-1].sj_strategy == SJ_OPT_FIRST_MATCH) ?
|
(*strategy)->set_from_prev(pos - 1);
|
||||||
MAX_TABLES : pos[-1].first_firstmatch_table;
|
}
|
||||||
pos->first_firstmatch_rtbl= pos[-1].first_firstmatch_rtbl;
|
pos->inner_tables_handled_with_other_sjs=
|
||||||
pos->firstmatch_need_tables= pos[-1].firstmatch_need_tables;
|
pos[-1].inner_tables_handled_with_other_sjs;
|
||||||
|
|
||||||
// LooseScan
|
|
||||||
pos->first_loosescan_table=
|
|
||||||
(pos[-1].sj_strategy == SJ_OPT_LOOSE_SCAN) ?
|
|
||||||
MAX_TABLES : pos[-1].first_loosescan_table;
|
|
||||||
pos->loosescan_need_tables= pos[-1].loosescan_need_tables;
|
|
||||||
|
|
||||||
// SJ-Materialization Scan
|
|
||||||
pos->sjm_scan_need_tables=
|
|
||||||
(pos[-1].sj_strategy == SJ_OPT_MATERIALIZE_SCAN) ?
|
|
||||||
0 : pos[-1].sjm_scan_need_tables;
|
|
||||||
pos->sjm_scan_last_inner= pos[-1].sjm_scan_last_inner;
|
|
||||||
|
|
||||||
// Duplicate Weedout
|
|
||||||
pos->dupsweedout_tables= pos[-1].dupsweedout_tables;
|
|
||||||
pos->first_dupsweedout_table= pos[-1].first_dupsweedout_table;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
table_map handled_by_fm_or_ls= 0;
|
pos->prefix_cost.convert_from_cost(*current_read_time);
|
||||||
/* FirstMatch Strategy */
|
pos->prefix_record_count= *current_record_count;
|
||||||
|
|
||||||
|
{
|
||||||
|
pos->sj_strategy= SJ_OPT_NONE;
|
||||||
|
|
||||||
|
for (strategy= pickers; *strategy != NULL; strategy++)
|
||||||
|
{
|
||||||
|
table_map handled_fanout;
|
||||||
|
sj_strategy_enum sj_strategy;
|
||||||
|
double rec_count= *current_record_count;
|
||||||
|
double read_time= *current_read_time;
|
||||||
|
if ((*strategy)->check_qep(join, idx, remaining_tables,
|
||||||
|
new_join_tab,
|
||||||
|
&rec_count,
|
||||||
|
&read_time,
|
||||||
|
&handled_fanout,
|
||||||
|
&sj_strategy,
|
||||||
|
loose_scan_pos))
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
It's possible to use the strategy. Use it, if
|
||||||
|
- it removes semi-join fanout that was not removed before
|
||||||
|
- using it is cheaper than using something else,
|
||||||
|
and {if some other strategy has removed fanout
|
||||||
|
that this strategy is trying to remove, then it
|
||||||
|
did remove the fanout only for one semi-join}
|
||||||
|
This is to avoid a situation when
|
||||||
|
1. strategy X removes fanout for semijoin X,Y
|
||||||
|
2. using strategy Z is cheaper, but it only removes
|
||||||
|
fanout from semijoin X.
|
||||||
|
3. We have no clue what to do about fanount of semi-join Y.
|
||||||
|
*/
|
||||||
|
if ((join->cur_dups_producing_tables & handled_fanout) ||
|
||||||
|
(read_time < *current_read_time &&
|
||||||
|
!(handled_fanout & pos->inner_tables_handled_with_other_sjs)))
|
||||||
|
{
|
||||||
|
/* Mark strategy as used */
|
||||||
|
(*strategy)->mark_used();
|
||||||
|
pos->sj_strategy= sj_strategy;
|
||||||
|
*current_read_time= read_time;
|
||||||
|
*current_record_count= rec_count;
|
||||||
|
join->cur_dups_producing_tables &= ~handled_fanout;
|
||||||
|
//TODO: update bitmap of semi-joins that were handled together with
|
||||||
|
// others.
|
||||||
|
if (is_multiple_semi_joins(join->positions, idx, handled_fanout))
|
||||||
|
pos->inner_tables_handled_with_other_sjs |= handled_fanout;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* We decided not to apply the strategy. */
|
||||||
|
(*strategy)->set_empty();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((emb_sj_nest= new_join_tab->emb_sj_nest))
|
||||||
|
{
|
||||||
|
join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
|
||||||
|
|
||||||
|
/* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
|
||||||
|
if (!(remaining_tables &
|
||||||
|
emb_sj_nest->sj_inner_tables & ~new_join_tab->table->map))
|
||||||
|
join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
|
||||||
|
}
|
||||||
|
|
||||||
|
pos->prefix_cost.convert_from_cost(*current_read_time);
|
||||||
|
pos->prefix_record_count= *current_record_count;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void Sj_materialization_picker::set_from_prev(struct st_position *prev)
|
||||||
|
{
|
||||||
|
if (prev->sjmat_picker.is_used)
|
||||||
|
set_empty();
|
||||||
|
else
|
||||||
|
{
|
||||||
|
sjm_scan_need_tables= prev->sjmat_picker.sjm_scan_need_tables;
|
||||||
|
sjm_scan_last_inner= prev->sjmat_picker.sjm_scan_last_inner;
|
||||||
|
}
|
||||||
|
is_used= FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool Sj_materialization_picker::check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *strategy,
|
||||||
|
POSITION *loose_scan_pos)
|
||||||
|
{
|
||||||
|
bool sjm_scan;
|
||||||
|
SJ_MATERIALIZATION_INFO *mat_info;
|
||||||
|
if ((mat_info= at_sjmat_pos(join, remaining_tables,
|
||||||
|
new_join_tab, idx, &sjm_scan)))
|
||||||
|
{
|
||||||
|
if (sjm_scan)
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
We can't yet evaluate this option yet. This is because we can't
|
||||||
|
accout for fanout of sj-inner tables yet:
|
||||||
|
|
||||||
|
ntX SJM-SCAN(it1 ... itN) | ot1 ... otN |
|
||||||
|
^(1) ^(2)
|
||||||
|
|
||||||
|
we're now at position (1). SJM temptable in general has multiple
|
||||||
|
records, so at point (1) we'll get the fanout from sj-inner tables (ie
|
||||||
|
there will be multiple record combinations).
|
||||||
|
|
||||||
|
The final join result will not contain any semi-join produced
|
||||||
|
fanout, i.e. tables within SJM-SCAN(...) will not contribute to
|
||||||
|
the cardinality of the join output. Extra fanout produced by
|
||||||
|
SJM-SCAN(...) will be 'absorbed' into fanout produced by ot1 ... otN.
|
||||||
|
|
||||||
|
The simple way to model this is to remove SJM-SCAN(...) fanout once
|
||||||
|
we reach the point #2.
|
||||||
|
*/
|
||||||
|
sjm_scan_need_tables=
|
||||||
|
new_join_tab->emb_sj_nest->sj_inner_tables |
|
||||||
|
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
|
||||||
|
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
|
||||||
|
sjm_scan_last_inner= idx;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* This is SJ-Materialization with lookups */
|
||||||
|
COST_VECT prefix_cost;
|
||||||
|
signed int first_tab= (int)idx - mat_info->tables;
|
||||||
|
double prefix_rec_count;
|
||||||
|
if (first_tab < (int)join->const_tables)
|
||||||
|
{
|
||||||
|
prefix_cost.zero();
|
||||||
|
prefix_rec_count= 1.0;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
prefix_cost= join->positions[first_tab].prefix_cost;
|
||||||
|
prefix_rec_count= join->positions[first_tab].prefix_record_count;
|
||||||
|
}
|
||||||
|
|
||||||
|
double mat_read_time= prefix_cost.total_cost();
|
||||||
|
mat_read_time += mat_info->materialization_cost.total_cost() +
|
||||||
|
prefix_rec_count * mat_info->lookup_cost.total_cost();
|
||||||
|
|
||||||
|
/*
|
||||||
|
NOTE: When we pick to use SJM[-Scan] we don't memcpy its POSITION
|
||||||
|
elements to join->positions as that makes it hard to return things
|
||||||
|
back when making one step back in join optimization. That's done
|
||||||
|
after the QEP has been chosen.
|
||||||
|
*/
|
||||||
|
*read_time= mat_read_time;
|
||||||
|
*record_count= prefix_rec_count;
|
||||||
|
*handled_fanout= new_join_tab->emb_sj_nest->sj_inner_tables;
|
||||||
|
*strategy= SJ_OPT_MATERIALIZE;
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* 4.A SJM-Scan second phase check */
|
||||||
|
if (sjm_scan_need_tables && /* Have SJM-Scan prefix */
|
||||||
|
!(sjm_scan_need_tables & remaining_tables))
|
||||||
|
{
|
||||||
|
TABLE_LIST *mat_nest=
|
||||||
|
join->positions[sjm_scan_last_inner].table->emb_sj_nest;
|
||||||
|
SJ_MATERIALIZATION_INFO *mat_info= mat_nest->sj_mat_info;
|
||||||
|
|
||||||
|
double prefix_cost;
|
||||||
|
double prefix_rec_count;
|
||||||
|
int first_tab= sjm_scan_last_inner + 1 - mat_info->tables;
|
||||||
|
/* Get the prefix cost */
|
||||||
|
if (first_tab == (int)join->const_tables)
|
||||||
|
{
|
||||||
|
prefix_rec_count= 1.0;
|
||||||
|
prefix_cost= 0.0;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
prefix_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
|
||||||
|
prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Add materialization cost */
|
||||||
|
prefix_cost += mat_info->materialization_cost.total_cost() +
|
||||||
|
prefix_rec_count * mat_info->scan_cost.total_cost();
|
||||||
|
prefix_rec_count *= mat_info->rows;
|
||||||
|
|
||||||
|
uint i;
|
||||||
|
table_map rem_tables= remaining_tables;
|
||||||
|
for (i= idx; i != (first_tab + mat_info->tables - 1); i--)
|
||||||
|
rem_tables |= join->positions[i].table->table->map;
|
||||||
|
|
||||||
|
POSITION curpos, dummy;
|
||||||
|
/* Need to re-run best-access-path as we prefix_rec_count has changed */
|
||||||
|
bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
|
||||||
|
for (i= first_tab + mat_info->tables; i <= idx; i++)
|
||||||
|
{
|
||||||
|
best_access_path(join, join->positions[i].table, rem_tables, i,
|
||||||
|
disable_jbuf, prefix_rec_count, &curpos, &dummy);
|
||||||
|
prefix_rec_count *= curpos.records_read;
|
||||||
|
prefix_cost += curpos.read_time;
|
||||||
|
}
|
||||||
|
|
||||||
|
*strategy= SJ_OPT_MATERIALIZE_SCAN;
|
||||||
|
*read_time= prefix_cost;
|
||||||
|
*record_count= prefix_rec_count;
|
||||||
|
*handled_fanout= mat_nest->sj_inner_tables;
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
return FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void LooseScan_picker::set_from_prev(struct st_position *prev)
|
||||||
|
{
|
||||||
|
if (prev->loosescan_picker.is_used)
|
||||||
|
set_empty();
|
||||||
|
else
|
||||||
|
{
|
||||||
|
first_loosescan_table= prev->loosescan_picker.first_loosescan_table;
|
||||||
|
loosescan_need_tables= prev->loosescan_picker.loosescan_need_tables;
|
||||||
|
}
|
||||||
|
is_used= FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool LooseScan_picker::check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *strategy,
|
||||||
|
struct st_position *loose_scan_pos)
|
||||||
|
{
|
||||||
|
POSITION *first= join->positions + first_loosescan_table;
|
||||||
|
/*
|
||||||
|
LooseScan strategy can't handle interleaving between tables from the
|
||||||
|
semi-join that LooseScan is handling and any other tables.
|
||||||
|
|
||||||
|
If we were considering LooseScan for the join prefix (1)
|
||||||
|
and the table we're adding creates an interleaving (2)
|
||||||
|
then
|
||||||
|
stop considering loose scan
|
||||||
|
*/
|
||||||
|
if ((first_loosescan_table != MAX_TABLES) && // (1)
|
||||||
|
(first->table->emb_sj_nest->sj_inner_tables & remaining_tables) && //(2)
|
||||||
|
new_join_tab->emb_sj_nest != first->table->emb_sj_nest) //(2)
|
||||||
|
{
|
||||||
|
first_loosescan_table= MAX_TABLES;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
If we got an option to use LooseScan for the current table, start
|
||||||
|
considering using LooseScan strategy
|
||||||
|
*/
|
||||||
|
if (loose_scan_pos->read_time != DBL_MAX && !join->outer_join)
|
||||||
|
{
|
||||||
|
first_loosescan_table= idx;
|
||||||
|
loosescan_need_tables=
|
||||||
|
new_join_tab->emb_sj_nest->sj_inner_tables |
|
||||||
|
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
|
||||||
|
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((first_loosescan_table != MAX_TABLES) &&
|
||||||
|
!(remaining_tables & loosescan_need_tables) &&
|
||||||
|
(new_join_tab->table->map & loosescan_need_tables))
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
Ok we have LooseScan plan and also have all LooseScan sj-nest's
|
||||||
|
inner tables and outer correlated tables into the prefix.
|
||||||
|
*/
|
||||||
|
|
||||||
|
first= join->positions + first_loosescan_table;
|
||||||
|
uint n_tables= my_count_bits(first->table->emb_sj_nest->sj_inner_tables);
|
||||||
|
/* Got a complete LooseScan range. Calculate its cost */
|
||||||
|
/*
|
||||||
|
The same problem as with FirstMatch - we need to save POSITIONs
|
||||||
|
somewhere but reserving space for all cases would require too
|
||||||
|
much space. We will re-calculate POSITION structures later on.
|
||||||
|
*/
|
||||||
|
bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
|
||||||
|
optimize_wo_join_buffering(join, first_loosescan_table, idx,
|
||||||
|
remaining_tables,
|
||||||
|
TRUE, //first_alt
|
||||||
|
disable_jbuf ? join->table_count :
|
||||||
|
first_loosescan_table + n_tables,
|
||||||
|
record_count,
|
||||||
|
read_time);
|
||||||
|
/*
|
||||||
|
We don't yet have any other strategies that could handle this
|
||||||
|
semi-join nest (the other options are Duplicate Elimination or
|
||||||
|
Materialization, which need at least the same set of tables in
|
||||||
|
the join prefix to be considered) so unconditionally pick the
|
||||||
|
LooseScan.
|
||||||
|
*/
|
||||||
|
*strategy= SJ_OPT_LOOSE_SCAN;
|
||||||
|
*handled_fanout= first->table->emb_sj_nest->sj_inner_tables;
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
return FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Firstmatch_picker::set_from_prev(struct st_position *prev)
|
||||||
|
{
|
||||||
|
if (prev->firstmatch_picker.is_used)
|
||||||
|
invalidate_firstmatch_prefix();
|
||||||
|
else
|
||||||
|
{
|
||||||
|
first_firstmatch_table= prev->firstmatch_picker.first_firstmatch_table;
|
||||||
|
first_firstmatch_rtbl= prev->firstmatch_picker.first_firstmatch_rtbl;
|
||||||
|
firstmatch_need_tables= prev->firstmatch_picker.firstmatch_need_tables;
|
||||||
|
}
|
||||||
|
is_used= FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Firstmatch_picker::check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *strategy,
|
||||||
|
POSITION *loose_scan_pos)
|
||||||
|
{
|
||||||
if (new_join_tab->emb_sj_nest &&
|
if (new_join_tab->emb_sj_nest &&
|
||||||
optimizer_flag(join->thd, OPTIMIZER_SWITCH_FIRSTMATCH) &&
|
optimizer_flag(join->thd, OPTIMIZER_SWITCH_FIRSTMATCH) &&
|
||||||
!join->outer_join)
|
!join->outer_join)
|
||||||
@ -2259,298 +2603,102 @@ void advance_sj_state(JOIN *join, table_map remaining_tables,
|
|||||||
((remaining_tables | new_join_tab->table->map) & sj_inner_tables)))
|
((remaining_tables | new_join_tab->table->map) & sj_inner_tables)))
|
||||||
{
|
{
|
||||||
/* Start tracking potential FirstMatch range */
|
/* Start tracking potential FirstMatch range */
|
||||||
pos->first_firstmatch_table= idx;
|
first_firstmatch_table= idx;
|
||||||
pos->firstmatch_need_tables= sj_inner_tables;
|
firstmatch_need_tables= sj_inner_tables;
|
||||||
pos->first_firstmatch_rtbl= remaining_tables;
|
first_firstmatch_rtbl= remaining_tables;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (pos->in_firstmatch_prefix())
|
if (in_firstmatch_prefix())
|
||||||
{
|
{
|
||||||
if (outer_corr_tables & pos->first_firstmatch_rtbl)
|
if (outer_corr_tables & first_firstmatch_rtbl)
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
Trying to add an sj-inner table whose sj-nest has an outer correlated
|
Trying to add an sj-inner table whose sj-nest has an outer correlated
|
||||||
table that was not in the prefix. This means FirstMatch can't be used.
|
table that was not in the prefix. This means FirstMatch can't be used.
|
||||||
*/
|
*/
|
||||||
pos->invalidate_firstmatch_prefix();
|
invalidate_firstmatch_prefix();
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
/* Record that we need all of this semi-join's inner tables, too */
|
/* Record that we need all of this semi-join's inner tables, too */
|
||||||
pos->firstmatch_need_tables|= sj_inner_tables;
|
firstmatch_need_tables|= sj_inner_tables;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (pos->in_firstmatch_prefix() &&
|
if (in_firstmatch_prefix() &&
|
||||||
!(pos->firstmatch_need_tables & remaining_tables))
|
!(firstmatch_need_tables & remaining_tables))
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
Got a complete FirstMatch range.
|
Got a complete FirstMatch range.
|
||||||
Calculate correct costs and fanout
|
Calculate correct costs and fanout
|
||||||
*/
|
*/
|
||||||
optimize_wo_join_buffering(join, pos->first_firstmatch_table, idx,
|
optimize_wo_join_buffering(join, first_firstmatch_table, idx,
|
||||||
remaining_tables, FALSE, idx,
|
remaining_tables, FALSE, idx,
|
||||||
current_record_count,
|
record_count,
|
||||||
current_read_time);
|
read_time);
|
||||||
/*
|
/*
|
||||||
We don't yet know what are the other strategies, so pick the
|
|
||||||
FirstMatch.
|
|
||||||
|
|
||||||
We ought to save the alternate POSITIONs produced by
|
We ought to save the alternate POSITIONs produced by
|
||||||
optimize_wo_join_buffering but the problem is that providing save
|
optimize_wo_join_buffering but the problem is that providing save
|
||||||
space uses too much space. Instead, we will re-calculate the
|
space uses too much space. Instead, we will re-calculate the
|
||||||
alternate POSITIONs after we've picked the best QEP.
|
alternate POSITIONs after we've picked the best QEP.
|
||||||
*/
|
*/
|
||||||
pos->sj_strategy= SJ_OPT_FIRST_MATCH;
|
*handled_fanout= firstmatch_need_tables;
|
||||||
handled_by_fm_or_ls= pos->firstmatch_need_tables;
|
/* *record_count and *read_time were set by the above call */
|
||||||
|
*strategy= SJ_OPT_FIRST_MATCH;
|
||||||
|
return TRUE;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
/* LooseScan Strategy */
|
|
||||||
{
|
|
||||||
POSITION *first=join->positions+pos->first_loosescan_table;
|
|
||||||
/*
|
|
||||||
LooseScan strategy can't handle interleaving between tables from the
|
|
||||||
semi-join that LooseScan is handling and any other tables.
|
|
||||||
|
|
||||||
If we were considering LooseScan for the join prefix (1)
|
void Duplicate_weedout_picker::set_from_prev(POSITION *prev)
|
||||||
and the table we're adding creates an interleaving (2)
|
{
|
||||||
then
|
if (prev->dups_weedout_picker.is_used)
|
||||||
stop considering loose scan
|
set_empty();
|
||||||
*/
|
|
||||||
if ((pos->first_loosescan_table != MAX_TABLES) && // (1)
|
|
||||||
(first->table->emb_sj_nest->sj_inner_tables & remaining_tables) && //(2)
|
|
||||||
new_join_tab->emb_sj_nest != first->table->emb_sj_nest) //(2)
|
|
||||||
{
|
|
||||||
pos->first_loosescan_table= MAX_TABLES;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
If we got an option to use LooseScan for the current table, start
|
|
||||||
considering using LooseScan strategy
|
|
||||||
*/
|
|
||||||
if (loose_scan_pos->read_time != DBL_MAX && !join->outer_join)
|
|
||||||
{
|
|
||||||
pos->first_loosescan_table= idx;
|
|
||||||
pos->loosescan_need_tables=
|
|
||||||
new_join_tab->emb_sj_nest->sj_inner_tables |
|
|
||||||
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
|
|
||||||
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((pos->first_loosescan_table != MAX_TABLES) &&
|
|
||||||
!(remaining_tables & pos->loosescan_need_tables) &&
|
|
||||||
(pos->table->table->map & pos->loosescan_need_tables))
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
Ok we have LooseScan plan and also have all LooseScan sj-nest's
|
|
||||||
inner tables and outer correlated tables into the prefix.
|
|
||||||
*/
|
|
||||||
|
|
||||||
first=join->positions + pos->first_loosescan_table;
|
|
||||||
uint n_tables= my_count_bits(first->table->emb_sj_nest->sj_inner_tables);
|
|
||||||
/* Got a complete LooseScan range. Calculate its cost */
|
|
||||||
/*
|
|
||||||
The same problem as with FirstMatch - we need to save POSITIONs
|
|
||||||
somewhere but reserving space for all cases would require too
|
|
||||||
much space. We will re-calculate POSITION structures later on.
|
|
||||||
*/
|
|
||||||
optimize_wo_join_buffering(join, pos->first_loosescan_table, idx,
|
|
||||||
remaining_tables,
|
|
||||||
TRUE, //first_alt
|
|
||||||
disable_jbuf ? join->table_count :
|
|
||||||
pos->first_loosescan_table + n_tables,
|
|
||||||
current_record_count,
|
|
||||||
current_read_time);
|
|
||||||
/*
|
|
||||||
We don't yet have any other strategies that could handle this
|
|
||||||
semi-join nest (the other options are Duplicate Elimination or
|
|
||||||
Materialization, which need at least the same set of tables in
|
|
||||||
the join prefix to be considered) so unconditionally pick the
|
|
||||||
LooseScan.
|
|
||||||
*/
|
|
||||||
pos->sj_strategy= SJ_OPT_LOOSE_SCAN;
|
|
||||||
handled_by_fm_or_ls= first->table->emb_sj_nest->sj_inner_tables;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
Update join->cur_sj_inner_tables (Used by FirstMatch in this function and
|
|
||||||
LooseScan detector in best_access_path)
|
|
||||||
*/
|
|
||||||
if ((emb_sj_nest= new_join_tab->emb_sj_nest))
|
|
||||||
{
|
|
||||||
join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
|
|
||||||
join->cur_dups_producing_tables |= emb_sj_nest->sj_inner_tables;
|
|
||||||
|
|
||||||
/* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
|
|
||||||
if (!(remaining_tables &
|
|
||||||
emb_sj_nest->sj_inner_tables & ~new_join_tab->table->map))
|
|
||||||
join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
|
|
||||||
}
|
|
||||||
join->cur_dups_producing_tables &= ~handled_by_fm_or_ls;
|
|
||||||
|
|
||||||
/* 4. SJ-Materialization and SJ-Materialization-scan strategy handler */
|
|
||||||
bool sjm_scan;
|
|
||||||
SJ_MATERIALIZATION_INFO *mat_info;
|
|
||||||
if ((mat_info= at_sjmat_pos(join, remaining_tables,
|
|
||||||
new_join_tab, idx, &sjm_scan)))
|
|
||||||
{
|
|
||||||
if (sjm_scan)
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
We can't yet evaluate this option yet. This is because we can't
|
|
||||||
accout for fanout of sj-inner tables yet:
|
|
||||||
|
|
||||||
ntX SJM-SCAN(it1 ... itN) | ot1 ... otN |
|
|
||||||
^(1) ^(2)
|
|
||||||
|
|
||||||
we're now at position (1). SJM temptable in general has multiple
|
|
||||||
records, so at point (1) we'll get the fanout from sj-inner tables (ie
|
|
||||||
there will be multiple record combinations).
|
|
||||||
|
|
||||||
The final join result will not contain any semi-join produced
|
|
||||||
fanout, i.e. tables within SJM-SCAN(...) will not contribute to
|
|
||||||
the cardinality of the join output. Extra fanout produced by
|
|
||||||
SJM-SCAN(...) will be 'absorbed' into fanout produced by ot1 ... otN.
|
|
||||||
|
|
||||||
The simple way to model this is to remove SJM-SCAN(...) fanout once
|
|
||||||
we reach the point #2.
|
|
||||||
*/
|
|
||||||
pos->sjm_scan_need_tables=
|
|
||||||
new_join_tab->emb_sj_nest->sj_inner_tables |
|
|
||||||
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
|
|
||||||
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
|
|
||||||
pos->sjm_scan_last_inner= idx;
|
|
||||||
}
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
/* This is SJ-Materialization with lookups */
|
dupsweedout_tables= prev->dups_weedout_picker.dupsweedout_tables;
|
||||||
COST_VECT prefix_cost;
|
first_dupsweedout_table= prev->dups_weedout_picker.first_dupsweedout_table;
|
||||||
signed int first_tab= (int)idx - mat_info->tables;
|
|
||||||
double prefix_rec_count;
|
|
||||||
if (first_tab < (int)join->const_tables)
|
|
||||||
{
|
|
||||||
prefix_cost.zero();
|
|
||||||
prefix_rec_count= 1.0;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
prefix_cost= join->positions[first_tab].prefix_cost;
|
|
||||||
prefix_rec_count= join->positions[first_tab].prefix_record_count;
|
|
||||||
}
|
}
|
||||||
|
is_used= FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
double mat_read_time= prefix_cost.total_cost();
|
|
||||||
mat_read_time += mat_info->materialization_cost.total_cost() +
|
|
||||||
prefix_rec_count * mat_info->lookup_cost.total_cost();
|
|
||||||
|
|
||||||
if (mat_read_time < *current_read_time || join->cur_dups_producing_tables)
|
bool Duplicate_weedout_picker::check_qep(JOIN *join,
|
||||||
{
|
uint idx,
|
||||||
/*
|
table_map remaining_tables,
|
||||||
NOTE: When we pick to use SJM[-Scan] we don't memcpy its POSITION
|
const JOIN_TAB *new_join_tab,
|
||||||
elements to join->positions as that makes it hard to return things
|
double *record_count,
|
||||||
back when making one step back in join optimization. That's done
|
double *read_time,
|
||||||
after the QEP has been chosen.
|
table_map *handled_fanout,
|
||||||
*/
|
sj_strategy_enum *strategy,
|
||||||
pos->sj_strategy= SJ_OPT_MATERIALIZE;
|
POSITION *loose_scan_pos
|
||||||
*current_read_time= mat_read_time;
|
)
|
||||||
*current_record_count= prefix_rec_count;
|
{
|
||||||
join->cur_dups_producing_tables&=
|
|
||||||
~new_join_tab->emb_sj_nest->sj_inner_tables;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* 4.A SJM-Scan second phase check */
|
|
||||||
if (pos->sjm_scan_need_tables && /* Have SJM-Scan prefix */
|
|
||||||
!(pos->sjm_scan_need_tables & remaining_tables))
|
|
||||||
{
|
|
||||||
TABLE_LIST *mat_nest=
|
|
||||||
join->positions[pos->sjm_scan_last_inner].table->emb_sj_nest;
|
|
||||||
SJ_MATERIALIZATION_INFO *mat_info= mat_nest->sj_mat_info;
|
|
||||||
|
|
||||||
double prefix_cost;
|
|
||||||
double prefix_rec_count;
|
|
||||||
int first_tab= pos->sjm_scan_last_inner + 1 - mat_info->tables;
|
|
||||||
/* Get the prefix cost */
|
|
||||||
if (first_tab == (int)join->const_tables)
|
|
||||||
{
|
|
||||||
prefix_rec_count= 1.0;
|
|
||||||
prefix_cost= 0.0;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
prefix_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
|
|
||||||
prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Add materialization cost */
|
|
||||||
prefix_cost += mat_info->materialization_cost.total_cost() +
|
|
||||||
prefix_rec_count * mat_info->scan_cost.total_cost();
|
|
||||||
prefix_rec_count *= mat_info->rows;
|
|
||||||
|
|
||||||
uint i;
|
|
||||||
table_map rem_tables= remaining_tables;
|
|
||||||
for (i= idx; i != (first_tab + mat_info->tables - 1); i--)
|
|
||||||
rem_tables |= join->positions[i].table->table->map;
|
|
||||||
|
|
||||||
POSITION curpos, dummy;
|
|
||||||
/* Need to re-run best-access-path as we prefix_rec_count has changed */
|
|
||||||
for (i= first_tab + mat_info->tables; i <= idx; i++)
|
|
||||||
{
|
|
||||||
best_access_path(join, join->positions[i].table, rem_tables, i,
|
|
||||||
disable_jbuf, prefix_rec_count, &curpos, &dummy);
|
|
||||||
prefix_rec_count *= curpos.records_read;
|
|
||||||
prefix_cost += curpos.read_time;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
Use the strategy if
|
|
||||||
* it is cheaper then what we've had, or
|
|
||||||
* we haven't picked any other semi-join strategy yet
|
|
||||||
In the second case, we pick this strategy unconditionally because
|
|
||||||
comparing cost without semi-join duplicate removal with cost with
|
|
||||||
duplicate removal is not an apples-to-apples comparison.
|
|
||||||
*/
|
|
||||||
if (prefix_cost < *current_read_time || join->cur_dups_producing_tables)
|
|
||||||
{
|
|
||||||
pos->sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
|
|
||||||
*current_read_time= prefix_cost;
|
|
||||||
*current_record_count= prefix_rec_count;
|
|
||||||
join->cur_dups_producing_tables&= ~mat_nest->sj_inner_tables;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* 5. Duplicate Weedout strategy handler */
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
Duplicate weedout can be applied after all ON-correlated and
|
|
||||||
correlated
|
|
||||||
*/
|
|
||||||
TABLE_LIST *nest;
|
TABLE_LIST *nest;
|
||||||
if ((nest= new_join_tab->emb_sj_nest))
|
if ((nest= new_join_tab->emb_sj_nest))
|
||||||
{
|
{
|
||||||
if (!pos->dupsweedout_tables)
|
if (!dupsweedout_tables)
|
||||||
pos->first_dupsweedout_table= idx;
|
first_dupsweedout_table= idx;
|
||||||
|
|
||||||
pos->dupsweedout_tables |= nest->sj_inner_tables |
|
dupsweedout_tables |= nest->sj_inner_tables |
|
||||||
nest->nested_join->sj_depends_on |
|
nest->nested_join->sj_depends_on |
|
||||||
nest->nested_join->sj_corr_tables;
|
nest->nested_join->sj_corr_tables;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (pos->dupsweedout_tables)
|
if (dupsweedout_tables)
|
||||||
{
|
{
|
||||||
/* we're in the process of constructing a DuplicateWeedout range */
|
/* we're in the process of constructing a DuplicateWeedout range */
|
||||||
TABLE_LIST *emb= new_join_tab->table->pos_in_table_list->embedding;
|
TABLE_LIST *emb= new_join_tab->table->pos_in_table_list->embedding;
|
||||||
/* and we've entered an inner side of an outer join*/
|
/* and we've entered an inner side of an outer join*/
|
||||||
if (emb && emb->on_expr)
|
if (emb && emb->on_expr)
|
||||||
pos->dupsweedout_tables |= emb->nested_join->used_tables;
|
dupsweedout_tables |= emb->nested_join->used_tables;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (pos->dupsweedout_tables &&
|
/* If this is the last table that we need for DuplicateWeedout range */
|
||||||
!(remaining_tables &
|
if (dupsweedout_tables && !(remaining_tables & ~new_join_tab->table->map &
|
||||||
~new_join_tab->table->map & pos->dupsweedout_tables))
|
dupsweedout_tables))
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
Ok, reached a state where we could put a dups weedout point.
|
Ok, reached a state where we could put a dups weedout point.
|
||||||
@ -2566,7 +2714,7 @@ void advance_sj_state(JOIN *join, table_map remaining_tables,
|
|||||||
We need to calculate the cost in case #2 also because we need to make
|
We need to calculate the cost in case #2 also because we need to make
|
||||||
choice between this join order and others.
|
choice between this join order and others.
|
||||||
*/
|
*/
|
||||||
uint first_tab= pos->first_dupsweedout_table;
|
uint first_tab= first_dupsweedout_table;
|
||||||
double dups_cost;
|
double dups_cost;
|
||||||
double prefix_rec_count;
|
double prefix_rec_count;
|
||||||
double sj_inner_fanout= 1.0;
|
double sj_inner_fanout= 1.0;
|
||||||
@ -2586,7 +2734,7 @@ void advance_sj_state(JOIN *join, table_map remaining_tables,
|
|||||||
}
|
}
|
||||||
|
|
||||||
table_map dups_removed_fanout= 0;
|
table_map dups_removed_fanout= 0;
|
||||||
for (uint j= pos->first_dupsweedout_table; j <= idx; j++)
|
for (uint j= first_dupsweedout_table; j <= idx; j++)
|
||||||
{
|
{
|
||||||
POSITION *p= join->positions + j;
|
POSITION *p= join->positions + j;
|
||||||
dups_cost += p->read_time;
|
dups_cost += p->read_time;
|
||||||
@ -2623,23 +2771,13 @@ void advance_sj_state(JOIN *join, table_map remaining_tables,
|
|||||||
one_lookup_cost;
|
one_lookup_cost;
|
||||||
dups_cost += write_cost + full_lookup_cost;
|
dups_cost += write_cost + full_lookup_cost;
|
||||||
|
|
||||||
/*
|
*read_time= dups_cost;
|
||||||
Use the strategy if
|
*record_count= prefix_rec_count * sj_outer_fanout;
|
||||||
* it is cheaper then what we've had, or
|
*handled_fanout= dups_removed_fanout;
|
||||||
* we haven't picked any other semi-join strategy yet
|
*strategy= SJ_OPT_DUPS_WEEDOUT;
|
||||||
The second part is necessary because this strategy is the last one
|
return TRUE;
|
||||||
to consider (it needs "the most" tables in the prefix) and we can't
|
|
||||||
leave duplicate-producing tables not handled by any strategy.
|
|
||||||
*/
|
|
||||||
if (dups_cost < *current_read_time || join->cur_dups_producing_tables)
|
|
||||||
{
|
|
||||||
pos->sj_strategy= SJ_OPT_DUPS_WEEDOUT;
|
|
||||||
*current_read_time= dups_cost;
|
|
||||||
*current_record_count= prefix_rec_count * sj_outer_fanout;
|
|
||||||
join->cur_dups_producing_tables &= ~dups_removed_fanout;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
return FALSE;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -2836,11 +2974,11 @@ void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
|
|||||||
}
|
}
|
||||||
else if (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
|
else if (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
|
||||||
{
|
{
|
||||||
POSITION *first_inner= join->best_positions + pos->sjm_scan_last_inner;
|
POSITION *first_inner= join->best_positions + pos->sjmat_picker.sjm_scan_last_inner;
|
||||||
SJ_MATERIALIZATION_INFO *sjm= first_inner->table->emb_sj_nest->sj_mat_info;
|
SJ_MATERIALIZATION_INFO *sjm= first_inner->table->emb_sj_nest->sj_mat_info;
|
||||||
sjm->is_used= TRUE;
|
sjm->is_used= TRUE;
|
||||||
sjm->is_sj_scan= TRUE;
|
sjm->is_sj_scan= TRUE;
|
||||||
first= pos->sjm_scan_last_inner - sjm->tables + 1;
|
first= pos->sjmat_picker.sjm_scan_last_inner - sjm->tables + 1;
|
||||||
memcpy(join->best_positions + first,
|
memcpy(join->best_positions + first,
|
||||||
sjm->positions, sizeof(POSITION) * sjm->tables);
|
sjm->positions, sizeof(POSITION) * sjm->tables);
|
||||||
join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
|
join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
|
||||||
@ -2878,7 +3016,7 @@ void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
|
|||||||
|
|
||||||
if (pos->sj_strategy == SJ_OPT_FIRST_MATCH)
|
if (pos->sj_strategy == SJ_OPT_FIRST_MATCH)
|
||||||
{
|
{
|
||||||
first= pos->first_firstmatch_table;
|
first= pos->firstmatch_picker.first_firstmatch_table;
|
||||||
join->best_positions[first].sj_strategy= SJ_OPT_FIRST_MATCH;
|
join->best_positions[first].sj_strategy= SJ_OPT_FIRST_MATCH;
|
||||||
join->best_positions[first].n_sj_tables= tablenr - first + 1;
|
join->best_positions[first].n_sj_tables= tablenr - first + 1;
|
||||||
POSITION dummy; // For loose scan paths
|
POSITION dummy; // For loose scan paths
|
||||||
@ -2911,7 +3049,7 @@ void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
|
|||||||
|
|
||||||
if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN)
|
if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN)
|
||||||
{
|
{
|
||||||
first= pos->first_loosescan_table;
|
first= pos->loosescan_picker.first_loosescan_table;
|
||||||
POSITION *first_pos= join->best_positions + first;
|
POSITION *first_pos= join->best_positions + first;
|
||||||
POSITION loose_scan_pos; // For loose scan paths
|
POSITION loose_scan_pos; // For loose scan paths
|
||||||
double record_count= (first== join->const_tables)? 1.0:
|
double record_count= (first== join->const_tables)? 1.0:
|
||||||
@ -2950,7 +3088,7 @@ void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
|
|||||||
Duplicate Weedout starting at pos->first_dupsweedout_table, ending at
|
Duplicate Weedout starting at pos->first_dupsweedout_table, ending at
|
||||||
this table.
|
this table.
|
||||||
*/
|
*/
|
||||||
first= pos->first_dupsweedout_table;
|
first= pos->dups_weedout_picker.first_dupsweedout_table;
|
||||||
join->best_positions[first].sj_strategy= SJ_OPT_DUPS_WEEDOUT;
|
join->best_positions[first].sj_strategy= SJ_OPT_DUPS_WEEDOUT;
|
||||||
join->best_positions[first].n_sj_tables= tablenr - first + 1;
|
join->best_positions[first].n_sj_tables= tablenr - first + 1;
|
||||||
}
|
}
|
||||||
@ -3893,8 +4031,8 @@ int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
|
|||||||
|
|
||||||
/* Calculate key length */
|
/* Calculate key length */
|
||||||
keylen= 0;
|
keylen= 0;
|
||||||
keyno= pos->loosescan_key;
|
keyno= pos->loosescan_picker.loosescan_key;
|
||||||
for (uint kp=0; kp < pos->loosescan_parts; kp++)
|
for (uint kp=0; kp < pos->loosescan_picker.loosescan_parts; kp++)
|
||||||
keylen += tab->table->key_info[keyno].key_part[kp].store_length;
|
keylen += tab->table->key_info[keyno].key_part[kp].store_length;
|
||||||
|
|
||||||
tab->loosescan_key_len= keylen;
|
tab->loosescan_key_len= keylen;
|
||||||
|
@ -263,8 +263,8 @@ public:
|
|||||||
{
|
{
|
||||||
pos->records_read= best_loose_scan_records;
|
pos->records_read= best_loose_scan_records;
|
||||||
pos->key= best_loose_scan_start_key;
|
pos->key= best_loose_scan_start_key;
|
||||||
pos->loosescan_key= best_loose_scan_key;
|
pos->loosescan_picker.loosescan_key= best_loose_scan_key;
|
||||||
pos->loosescan_parts= best_max_loose_keypart + 1;
|
pos->loosescan_picker.loosescan_parts= best_max_loose_keypart + 1;
|
||||||
pos->use_join_buffer= FALSE;
|
pos->use_join_buffer= FALSE;
|
||||||
pos->table= tab;
|
pos->table= tab;
|
||||||
// todo need ref_depend_map ?
|
// todo need ref_depend_map ?
|
||||||
@ -277,8 +277,7 @@ public:
|
|||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
void advance_sj_state(JOIN *join, const table_map remaining_tables,
|
void advance_sj_state(JOIN *join, const table_map remaining_tables, uint idx,
|
||||||
const JOIN_TAB *new_join_tab, uint idx,
|
|
||||||
double *current_record_count, double *current_read_time,
|
double *current_record_count, double *current_read_time,
|
||||||
POSITION *loose_scan_pos);
|
POSITION *loose_scan_pos);
|
||||||
void restore_prev_sj_state(const table_map remaining_tables,
|
void restore_prev_sj_state(const table_map remaining_tables,
|
||||||
|
@ -85,7 +85,7 @@ static int join_tab_cmp_embedded_first(const void *emb, const void* ptr1, const
|
|||||||
static bool find_best(JOIN *join,table_map rest_tables,uint index,
|
static bool find_best(JOIN *join,table_map rest_tables,uint index,
|
||||||
double record_count,double read_time);
|
double record_count,double read_time);
|
||||||
static uint cache_record_length(JOIN *join,uint index);
|
static uint cache_record_length(JOIN *join,uint index);
|
||||||
static bool get_best_combination(JOIN *join);
|
bool get_best_combination(JOIN *join);
|
||||||
static store_key *get_store_key(THD *thd,
|
static store_key *get_store_key(THD *thd,
|
||||||
KEYUSE *keyuse, table_map used_tables,
|
KEYUSE *keyuse, table_map used_tables,
|
||||||
KEY_PART_INFO *key_part, uchar *key_buff,
|
KEY_PART_INFO *key_part, uchar *key_buff,
|
||||||
@ -4883,7 +4883,7 @@ void set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key)
|
|||||||
join->positions[idx].records_read=1.0; /* This is a const table */
|
join->positions[idx].records_read=1.0; /* This is a const table */
|
||||||
join->positions[idx].ref_depend_map= 0;
|
join->positions[idx].ref_depend_map= 0;
|
||||||
|
|
||||||
join->positions[idx].loosescan_key= MAX_KEY; /* Not a LooseScan */
|
// join->positions[idx].loosescan_key= MAX_KEY; /* Not a LooseScan */
|
||||||
join->positions[idx].sj_strategy= SJ_OPT_NONE;
|
join->positions[idx].sj_strategy= SJ_OPT_NONE;
|
||||||
join->positions[idx].use_join_buffer= FALSE;
|
join->positions[idx].use_join_buffer= FALSE;
|
||||||
|
|
||||||
@ -5533,7 +5533,7 @@ best_access_path(JOIN *join,
|
|||||||
pos->key= best_key;
|
pos->key= best_key;
|
||||||
pos->table= s;
|
pos->table= s;
|
||||||
pos->ref_depend_map= best_ref_depends_map;
|
pos->ref_depend_map= best_ref_depends_map;
|
||||||
pos->loosescan_key= MAX_KEY;
|
pos->loosescan_picker.loosescan_key= MAX_KEY;
|
||||||
pos->use_join_buffer= best_uses_jbuf;
|
pos->use_join_buffer= best_uses_jbuf;
|
||||||
|
|
||||||
loose_scan_opt.save_to_position(s, loose_scan_pos);
|
loose_scan_opt.save_to_position(s, loose_scan_pos);
|
||||||
@ -5840,7 +5840,7 @@ optimize_straight_join(JOIN *join, table_map join_tables)
|
|||||||
/* compute the cost of the new plan extended with 's' */
|
/* compute the cost of the new plan extended with 's' */
|
||||||
record_count*= join->positions[idx].records_read;
|
record_count*= join->positions[idx].records_read;
|
||||||
read_time+= join->positions[idx].read_time;
|
read_time+= join->positions[idx].read_time;
|
||||||
advance_sj_state(join, join_tables, s, idx, &record_count, &read_time,
|
advance_sj_state(join, join_tables, idx, &record_count, &read_time,
|
||||||
&loose_scan_pos);
|
&loose_scan_pos);
|
||||||
|
|
||||||
join_tables&= ~(s->table->map);
|
join_tables&= ~(s->table->map);
|
||||||
@ -6356,7 +6356,7 @@ best_extension_by_limited_search(JOIN *join,
|
|||||||
current_record_count= record_count * position->records_read;
|
current_record_count= record_count * position->records_read;
|
||||||
current_read_time= read_time + position->read_time;
|
current_read_time= read_time + position->read_time;
|
||||||
|
|
||||||
advance_sj_state(join, remaining_tables, s, idx, ¤t_record_count,
|
advance_sj_state(join, remaining_tables, idx, ¤t_record_count,
|
||||||
¤t_read_time, &loose_scan_pos);
|
¤t_read_time, &loose_scan_pos);
|
||||||
|
|
||||||
/* Expand only partial plans with lower cost than the best QEP so far */
|
/* Expand only partial plans with lower cost than the best QEP so far */
|
||||||
@ -6513,7 +6513,7 @@ find_best(JOIN *join,table_map rest_tables,uint idx,double record_count,
|
|||||||
*/
|
*/
|
||||||
double current_record_count=record_count*records;
|
double current_record_count=record_count*records;
|
||||||
double current_read_time=read_time+best;
|
double current_read_time=read_time+best;
|
||||||
advance_sj_state(join, rest_tables, s, idx, ¤t_record_count,
|
advance_sj_state(join, rest_tables, idx, ¤t_record_count,
|
||||||
¤t_read_time, &loose_scan_pos);
|
¤t_read_time, &loose_scan_pos);
|
||||||
|
|
||||||
if (best_record_count > current_record_count ||
|
if (best_record_count > current_record_count ||
|
||||||
@ -7013,7 +7013,7 @@ static Item * const null_ptr= NULL;
|
|||||||
TRUE Out of memory
|
TRUE Out of memory
|
||||||
*/
|
*/
|
||||||
|
|
||||||
static bool
|
bool
|
||||||
get_best_combination(JOIN *join)
|
get_best_combination(JOIN *join)
|
||||||
{
|
{
|
||||||
uint tablenr;
|
uint tablenr;
|
||||||
@ -7091,13 +7091,6 @@ get_best_combination(JOIN *join)
|
|||||||
|
|
||||||
*j= *join->best_positions[tablenr].table;
|
*j= *join->best_positions[tablenr].table;
|
||||||
|
|
||||||
#if 0
|
|
||||||
/* SJ-Materialization is represented with join tab ranges */
|
|
||||||
if (j->sj_strategy == SJ_OPT_MATERIALIZE ||
|
|
||||||
j->sj_strategy == SJ_OPT_MATERIALIZE)
|
|
||||||
j->sj_strategy= SJ_OPT_NONE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
j->bush_root_tab= sjm_nest_root;
|
j->bush_root_tab= sjm_nest_root;
|
||||||
|
|
||||||
form=join->table[tablenr]=j->table;
|
form=join->table[tablenr]=j->table;
|
||||||
@ -7120,7 +7113,7 @@ get_best_combination(JOIN *join)
|
|||||||
(join->best_positions[tablenr].sj_strategy == SJ_OPT_LOOSE_SCAN))
|
(join->best_positions[tablenr].sj_strategy == SJ_OPT_LOOSE_SCAN))
|
||||||
{
|
{
|
||||||
j->type=JT_ALL;
|
j->type=JT_ALL;
|
||||||
j->index= join->best_positions[tablenr].loosescan_key;
|
j->index= join->best_positions[tablenr].loosescan_picker.loosescan_key;
|
||||||
if (tablenr != join->const_tables)
|
if (tablenr != join->const_tables)
|
||||||
join->full_join=1;
|
join->full_join=1;
|
||||||
}
|
}
|
||||||
|
339
sql/sql_select.h
339
sql/sql_select.h
@ -158,6 +158,17 @@ enum enum_nested_loop_state
|
|||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* Possible sj_strategy values */
|
||||||
|
enum sj_strategy_enum
|
||||||
|
{
|
||||||
|
SJ_OPT_NONE=0,
|
||||||
|
SJ_OPT_DUPS_WEEDOUT=1,
|
||||||
|
SJ_OPT_LOOSE_SCAN =2,
|
||||||
|
SJ_OPT_FIRST_MATCH =3,
|
||||||
|
SJ_OPT_MATERIALIZE =4,
|
||||||
|
SJ_OPT_MATERIALIZE_SCAN=5
|
||||||
|
};
|
||||||
|
|
||||||
/* Values for JOIN_TAB::packed_info */
|
/* Values for JOIN_TAB::packed_info */
|
||||||
#define TAB_INFO_HAVE_VALUE 1
|
#define TAB_INFO_HAVE_VALUE 1
|
||||||
#define TAB_INFO_USING_INDEX 2
|
#define TAB_INFO_USING_INDEX 2
|
||||||
@ -374,7 +385,7 @@ typedef struct st_join_table {
|
|||||||
POSITION::sj_strategy field. This field is set up by the
|
POSITION::sj_strategy field. This field is set up by the
|
||||||
fix_semijoin_strategies_for_picked_join_order.
|
fix_semijoin_strategies_for_picked_join_order.
|
||||||
*/
|
*/
|
||||||
uint sj_strategy;
|
enum sj_strategy_enum sj_strategy;
|
||||||
|
|
||||||
uint n_sj_tables;
|
uint n_sj_tables;
|
||||||
|
|
||||||
@ -496,66 +507,126 @@ enum_nested_loop_state
|
|||||||
end_write_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
|
end_write_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
|
||||||
bool end_of_records);
|
bool end_of_records);
|
||||||
|
|
||||||
|
/* psergey */
|
||||||
|
|
||||||
/**
|
|
||||||
Information about a position of table within a join order. Used in join
|
struct st_position;
|
||||||
optimization.
|
|
||||||
|
class Semi_join_strategy_picker
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
/* Called when starting to build a new join prefix */
|
||||||
|
virtual void set_empty() = 0;
|
||||||
|
|
||||||
|
/*
|
||||||
|
Update internal state after another table has been added to the join
|
||||||
|
prefix
|
||||||
|
*/
|
||||||
|
virtual void set_from_prev(struct st_position *prev) = 0;
|
||||||
|
|
||||||
|
virtual bool check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *strategy,
|
||||||
|
struct st_position *loose_scan_pos) = 0;
|
||||||
|
|
||||||
|
virtual void mark_used() = 0;
|
||||||
|
|
||||||
|
virtual ~Semi_join_strategy_picker() {}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
Duplicate Weedout strategy optimization state
|
||||||
*/
|
*/
|
||||||
typedef struct st_position
|
|
||||||
|
class Duplicate_weedout_picker : public Semi_join_strategy_picker
|
||||||
|
{
|
||||||
|
/* The first table that the strategy will need to handle */
|
||||||
|
uint first_dupsweedout_table;
|
||||||
|
|
||||||
|
/*
|
||||||
|
Tables that we will need to have in the prefix to do the weedout step
|
||||||
|
(all inner and all outer that the involved semi-joins are correlated with)
|
||||||
|
*/
|
||||||
|
table_map dupsweedout_tables;
|
||||||
|
|
||||||
|
bool is_used;
|
||||||
|
public:
|
||||||
|
void set_empty()
|
||||||
|
{
|
||||||
|
dupsweedout_tables= 0;
|
||||||
|
first_dupsweedout_table= MAX_TABLES;
|
||||||
|
is_used= FALSE;
|
||||||
|
}
|
||||||
|
void set_from_prev(struct st_position *prev);
|
||||||
|
|
||||||
|
bool check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *stratey,
|
||||||
|
struct st_position *loose_scan_pos);
|
||||||
|
|
||||||
|
void mark_used() { is_used= TRUE; }
|
||||||
|
friend void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class Firstmatch_picker : public Semi_join_strategy_picker
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
The "fanout": number of output rows that will be produced (after
|
Index of the first inner table that we intend to handle with this
|
||||||
pushed down selection condition is applied) per each row combination of
|
strategy
|
||||||
previous tables.
|
|
||||||
*/
|
*/
|
||||||
double records_read;
|
uint first_firstmatch_table;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
Cost accessing the table in course of the entire complete join execution,
|
Tables that were not in the join prefix when we've started considering
|
||||||
i.e. cost of one access method use (e.g. 'range' or 'ref' scan ) times
|
FirstMatch strategy.
|
||||||
number the access method will be invoked.
|
|
||||||
*/
|
*/
|
||||||
double read_time;
|
table_map first_firstmatch_rtbl;
|
||||||
JOIN_TAB *table;
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
NULL - 'index' or 'range' or 'index_merge' or 'ALL' access is used.
|
Tables that need to be in the prefix before we can calculate the cost
|
||||||
Other - [eq_]ref[_or_null] access is used. Pointer to {t.keypart1 = expr}
|
of using FirstMatch strategy.
|
||||||
*/
|
*/
|
||||||
KEYUSE *key;
|
table_map firstmatch_need_tables;
|
||||||
|
|
||||||
/* If ref-based access is used: bitmap of tables this table depends on */
|
bool is_used;
|
||||||
table_map ref_depend_map;
|
|
||||||
|
|
||||||
bool use_join_buffer;
|
bool in_firstmatch_prefix() { return (first_firstmatch_table != MAX_TABLES); }
|
||||||
|
void invalidate_firstmatch_prefix() { first_firstmatch_table= MAX_TABLES; }
|
||||||
|
public:
|
||||||
|
void set_empty()
|
||||||
|
{
|
||||||
|
invalidate_firstmatch_prefix();
|
||||||
|
is_used= FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_from_prev(struct st_position *prev);
|
||||||
|
bool check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *strategy,
|
||||||
|
struct st_position *loose_scan_pos);
|
||||||
|
|
||||||
|
void mark_used() { is_used= TRUE; }
|
||||||
|
friend void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
/* These form a stack of partial join order costs and output sizes */
|
class LooseScan_picker : public Semi_join_strategy_picker
|
||||||
COST_VECT prefix_cost;
|
{
|
||||||
double prefix_record_count;
|
|
||||||
|
|
||||||
/*
|
|
||||||
Current optimization state: Semi-join strategy to be used for this
|
|
||||||
and preceding join tables.
|
|
||||||
|
|
||||||
Join optimizer sets this for the *last* join_tab in the
|
|
||||||
duplicate-generating range. That is, in order to interpret this field,
|
|
||||||
one needs to traverse join->[best_]positions array from right to left.
|
|
||||||
When you see a join table with sj_strategy!= SJ_OPT_NONE, some other
|
|
||||||
field (depending on the strategy) tells how many preceding positions
|
|
||||||
this applies to. The values of covered_preceding_positions->sj_strategy
|
|
||||||
must be ignored.
|
|
||||||
*/
|
|
||||||
uint sj_strategy;
|
|
||||||
/*
|
|
||||||
Valid only after fix_semijoin_strategies_for_picked_join_order() call:
|
|
||||||
if sj_strategy!=SJ_OPT_NONE, this is the number of subsequent tables that
|
|
||||||
are covered by the specified semi-join strategy
|
|
||||||
*/
|
|
||||||
uint n_sj_tables;
|
|
||||||
|
|
||||||
/* LooseScan strategy members */
|
|
||||||
|
|
||||||
/* The first (i.e. driving) table we're doing loose scan for */
|
/* The first (i.e. driving) table we're doing loose scan for */
|
||||||
uint first_loosescan_table;
|
uint first_loosescan_table;
|
||||||
/*
|
/*
|
||||||
@ -573,36 +644,46 @@ typedef struct st_position
|
|||||||
uint loosescan_key; // final (one for strategy instance )
|
uint loosescan_key; // final (one for strategy instance )
|
||||||
uint loosescan_parts; /* Number of keyparts to be kept distinct */
|
uint loosescan_parts; /* Number of keyparts to be kept distinct */
|
||||||
|
|
||||||
/* FirstMatch strategy */
|
bool is_used;
|
||||||
/*
|
public:
|
||||||
Index of the first inner table that we intend to handle with this
|
void set_empty()
|
||||||
strategy
|
{
|
||||||
*/
|
first_loosescan_table= MAX_TABLES;
|
||||||
uint first_firstmatch_table;
|
is_used= FALSE;
|
||||||
/*
|
}
|
||||||
Tables that were not in the join prefix when we've started considering
|
|
||||||
FirstMatch strategy.
|
|
||||||
*/
|
|
||||||
table_map first_firstmatch_rtbl;
|
|
||||||
/*
|
|
||||||
Tables that need to be in the prefix before we can calculate the cost
|
|
||||||
of using FirstMatch strategy.
|
|
||||||
*/
|
|
||||||
table_map firstmatch_need_tables;
|
|
||||||
|
|
||||||
bool in_firstmatch_prefix() { return (first_firstmatch_table != MAX_TABLES); }
|
void set_from_prev(struct st_position *prev);
|
||||||
void invalidate_firstmatch_prefix() { first_firstmatch_table= MAX_TABLES; }
|
bool check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *strategy,
|
||||||
|
struct st_position *loose_scan_pos);
|
||||||
|
void mark_used() { is_used= TRUE; }
|
||||||
|
|
||||||
/* Duplicate Weedout strategy */
|
friend class Loose_scan_opt;
|
||||||
/* The first table that the strategy will need to handle */
|
friend void best_access_path(JOIN *join,
|
||||||
uint first_dupsweedout_table;
|
JOIN_TAB *s,
|
||||||
/*
|
table_map remaining_tables,
|
||||||
Tables that we will need to have in the prefix to do the weedout step
|
uint idx,
|
||||||
(all inner and all outer that the involved semi-joins are correlated with)
|
bool disable_jbuf,
|
||||||
*/
|
double record_count,
|
||||||
table_map dupsweedout_tables;
|
struct st_position *pos,
|
||||||
|
struct st_position *loose_scan_pos);
|
||||||
|
friend bool get_best_combination(JOIN *join);
|
||||||
|
friend int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
|
||||||
|
uint no_jbuf_after);
|
||||||
|
friend void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class Sj_materialization_picker : public Semi_join_strategy_picker
|
||||||
|
{
|
||||||
|
bool is_used;
|
||||||
|
|
||||||
/* SJ-Materialization-Scan strategy */
|
|
||||||
/* The last inner table (valid once we're after it) */
|
/* The last inner table (valid once we're after it) */
|
||||||
uint sjm_scan_last_inner;
|
uint sjm_scan_last_inner;
|
||||||
/*
|
/*
|
||||||
@ -612,9 +693,101 @@ typedef struct st_position
|
|||||||
*/
|
*/
|
||||||
table_map sjm_scan_need_tables;
|
table_map sjm_scan_need_tables;
|
||||||
|
|
||||||
table_map prefix_dups_producing_tables;
|
public:
|
||||||
} POSITION;
|
void set_empty()
|
||||||
|
{
|
||||||
|
sjm_scan_need_tables= 0;
|
||||||
|
LINT_INIT(sjm_scan_last_inner);
|
||||||
|
is_used= FALSE;
|
||||||
|
}
|
||||||
|
void set_from_prev(struct st_position *prev);
|
||||||
|
bool check_qep(JOIN *join,
|
||||||
|
uint idx,
|
||||||
|
table_map remaining_tables,
|
||||||
|
const JOIN_TAB *new_join_tab,
|
||||||
|
double *record_count,
|
||||||
|
double *read_time,
|
||||||
|
table_map *handled_fanout,
|
||||||
|
sj_strategy_enum *strategy,
|
||||||
|
struct st_position *loose_scan_pos);
|
||||||
|
void mark_used() { is_used= TRUE; }
|
||||||
|
|
||||||
|
friend void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
Information about a position of table within a join order. Used in join
|
||||||
|
optimization.
|
||||||
|
*/
|
||||||
|
typedef struct st_position
|
||||||
|
{
|
||||||
|
/* The table that's put into join order */
|
||||||
|
JOIN_TAB *table;
|
||||||
|
|
||||||
|
/*
|
||||||
|
The "fanout": number of output rows that will be produced (after
|
||||||
|
pushed down selection condition is applied) per each row combination of
|
||||||
|
previous tables.
|
||||||
|
*/
|
||||||
|
double records_read;
|
||||||
|
|
||||||
|
/*
|
||||||
|
Cost accessing the table in course of the entire complete join execution,
|
||||||
|
i.e. cost of one access method use (e.g. 'range' or 'ref' scan ) times
|
||||||
|
number the access method will be invoked.
|
||||||
|
*/
|
||||||
|
double read_time;
|
||||||
|
|
||||||
|
/* Cumulative cost and record count for the join prefix */
|
||||||
|
COST_VECT prefix_cost;
|
||||||
|
double prefix_record_count;
|
||||||
|
|
||||||
|
/*
|
||||||
|
NULL - 'index' or 'range' or 'index_merge' or 'ALL' access is used.
|
||||||
|
Other - [eq_]ref[_or_null] access is used. Pointer to {t.keypart1 = expr}
|
||||||
|
*/
|
||||||
|
KEYUSE *key;
|
||||||
|
|
||||||
|
/* If ref-based access is used: bitmap of tables this table depends on */
|
||||||
|
table_map ref_depend_map;
|
||||||
|
|
||||||
|
/*
|
||||||
|
TRUE <=> join buffering will be used. At the moment this is based on
|
||||||
|
*very* imprecise guesses made in best_access_path().
|
||||||
|
*/
|
||||||
|
bool use_join_buffer;
|
||||||
|
|
||||||
|
/*
|
||||||
|
Current optimization state: Semi-join strategy to be used for this
|
||||||
|
and preceding join tables.
|
||||||
|
|
||||||
|
Join optimizer sets this for the *last* join_tab in the
|
||||||
|
duplicate-generating range. That is, in order to interpret this field,
|
||||||
|
one needs to traverse join->[best_]positions array from right to left.
|
||||||
|
When you see a join table with sj_strategy!= SJ_OPT_NONE, some other
|
||||||
|
field (depending on the strategy) tells how many preceding positions
|
||||||
|
this applies to. The values of covered_preceding_positions->sj_strategy
|
||||||
|
must be ignored.
|
||||||
|
*/
|
||||||
|
enum sj_strategy_enum sj_strategy;
|
||||||
|
|
||||||
|
/*
|
||||||
|
Valid only after fix_semijoin_strategies_for_picked_join_order() call:
|
||||||
|
if sj_strategy!=SJ_OPT_NONE, this is the number of subsequent tables that
|
||||||
|
are covered by the specified semi-join strategy
|
||||||
|
*/
|
||||||
|
uint n_sj_tables;
|
||||||
|
|
||||||
|
table_map prefix_dups_producing_tables;
|
||||||
|
|
||||||
|
table_map inner_tables_handled_with_other_sjs;
|
||||||
|
|
||||||
|
Duplicate_weedout_picker dups_weedout_picker;
|
||||||
|
Firstmatch_picker firstmatch_picker;
|
||||||
|
LooseScan_picker loosescan_picker;
|
||||||
|
Sj_materialization_picker sjmat_picker;
|
||||||
|
} POSITION;
|
||||||
|
|
||||||
typedef struct st_rollup
|
typedef struct st_rollup
|
||||||
{
|
{
|
||||||
@ -626,18 +799,6 @@ typedef struct st_rollup
|
|||||||
} ROLLUP;
|
} ROLLUP;
|
||||||
|
|
||||||
|
|
||||||
#define SJ_OPT_NONE 0
|
|
||||||
#define SJ_OPT_DUPS_WEEDOUT 1
|
|
||||||
#define SJ_OPT_LOOSE_SCAN 2
|
|
||||||
#define SJ_OPT_FIRST_MATCH 3
|
|
||||||
#define SJ_OPT_MATERIALIZE 4
|
|
||||||
#define SJ_OPT_MATERIALIZE_SCAN 5
|
|
||||||
|
|
||||||
inline bool sj_is_materialize_strategy(uint strategy)
|
|
||||||
{
|
|
||||||
return strategy >= SJ_OPT_MATERIALIZE;
|
|
||||||
}
|
|
||||||
|
|
||||||
class JOIN_TAB_RANGE: public Sql_alloc
|
class JOIN_TAB_RANGE: public Sql_alloc
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
Reference in New Issue
Block a user