mirror of
https://github.com/MariaDB/server.git
synced 2025-07-30 16:24:05 +03:00
MDEV-8610 "WHERE CONTAINS(indexed_geometry_column,1)" causes full table scan
This commit is contained in:
611
sql/opt_range.h
611
sql/opt_range.h
@ -52,6 +52,616 @@ struct KEY_PART {
|
||||
Field::imagetype image_type;
|
||||
};
|
||||
|
||||
|
||||
class RANGE_OPT_PARAM;
|
||||
/*
|
||||
A construction block of the SEL_ARG-graph.
|
||||
|
||||
The following description only covers graphs of SEL_ARG objects with
|
||||
sel_arg->type==KEY_RANGE:
|
||||
|
||||
One SEL_ARG object represents an "elementary interval" in form
|
||||
|
||||
min_value <=? table.keypartX <=? max_value
|
||||
|
||||
The interval is a non-empty interval of any kind: with[out] minimum/maximum
|
||||
bound, [half]open/closed, single-point interval, etc.
|
||||
|
||||
1. SEL_ARG GRAPH STRUCTURE
|
||||
|
||||
SEL_ARG objects are linked together in a graph. The meaning of the graph
|
||||
is better demostrated by an example:
|
||||
|
||||
tree->keys[i]
|
||||
|
|
||||
| $ $
|
||||
| part=1 $ part=2 $ part=3
|
||||
| $ $
|
||||
| +-------+ $ +-------+ $ +--------+
|
||||
| | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
|
||||
| +-------+ $ +-------+ $ +--------+
|
||||
| | $ $ |
|
||||
| | $ $ +--------+
|
||||
| | $ $ | kp3=12 |
|
||||
| | $ $ +--------+
|
||||
| +-------+ $ $
|
||||
\->| kp1=2 |--$--------------$-+
|
||||
+-------+ $ $ | +--------+
|
||||
| $ $ ==>| kp3=11 |
|
||||
+-------+ $ $ | +--------+
|
||||
| kp1=3 |--$--------------$-+ |
|
||||
+-------+ $ $ +--------+
|
||||
| $ $ | kp3=14 |
|
||||
... $ $ +--------+
|
||||
|
||||
The entire graph is partitioned into "interval lists".
|
||||
|
||||
An interval list is a sequence of ordered disjoint intervals over the same
|
||||
key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
|
||||
all intervals in the list form an RB-tree, linked via left/right/parent
|
||||
pointers. The RB-tree root SEL_ARG object will be further called "root of the
|
||||
interval list".
|
||||
|
||||
In the example pic, there are 4 interval lists:
|
||||
"kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
|
||||
The vertical lines represent SEL_ARG::next/prev pointers.
|
||||
|
||||
In an interval list, each member X may have SEL_ARG::next_key_part pointer
|
||||
pointing to the root of another interval list Y. The pointed interval list
|
||||
must cover a key part with greater number (i.e. Y->part > X->part).
|
||||
|
||||
In the example pic, the next_key_part pointers are represented by
|
||||
horisontal lines.
|
||||
|
||||
2. SEL_ARG GRAPH SEMANTICS
|
||||
|
||||
It represents a condition in a special form (we don't have a name for it ATM)
|
||||
The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
|
||||
|
||||
For example, the picture represents the condition in form:
|
||||
(kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR
|
||||
(kp1=2 AND (kp3=11 OR kp3=14)) OR
|
||||
(kp1=3 AND (kp3=11 OR kp3=14))
|
||||
|
||||
|
||||
3. SEL_ARG GRAPH USE
|
||||
|
||||
Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
|
||||
Then walk the SEL_ARG graph and get a list of dijsoint ordered key
|
||||
intervals (i.e. intervals in form
|
||||
|
||||
(constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)
|
||||
|
||||
Those intervals can be used to access the index. The uses are in:
|
||||
- check_quick_select() - Walk the SEL_ARG graph and find an estimate of
|
||||
how many table records are contained within all
|
||||
intervals.
|
||||
- get_quick_select() - Walk the SEL_ARG, materialize the key intervals,
|
||||
and create QUICK_RANGE_SELECT object that will
|
||||
read records within these intervals.
|
||||
|
||||
4. SPACE COMPLEXITY NOTES
|
||||
|
||||
SEL_ARG graph is a representation of an ordered disjoint sequence of
|
||||
intervals over the ordered set of index tuple values.
|
||||
|
||||
For multi-part keys, one can construct a WHERE expression such that its
|
||||
list of intervals will be of combinatorial size. Here is an example:
|
||||
|
||||
(keypart1 IN (1,2, ..., n1)) AND
|
||||
(keypart2 IN (1,2, ..., n2)) AND
|
||||
(keypart3 IN (1,2, ..., n3))
|
||||
|
||||
For this WHERE clause the list of intervals will have n1*n2*n3 intervals
|
||||
of form
|
||||
|
||||
(keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i}
|
||||
|
||||
SEL_ARG graph structure aims to reduce the amount of required space by
|
||||
"sharing" the elementary intervals when possible (the pic at the
|
||||
beginning of this comment has examples of such sharing). The sharing may
|
||||
prevent combinatorial blowup:
|
||||
|
||||
There are WHERE clauses that have combinatorial-size interval lists but
|
||||
will be represented by a compact SEL_ARG graph.
|
||||
Example:
|
||||
(keypartN IN (1,2, ..., n1)) AND
|
||||
...
|
||||
(keypart2 IN (1,2, ..., n2)) AND
|
||||
(keypart1 IN (1,2, ..., n3))
|
||||
|
||||
but not in all cases:
|
||||
|
||||
- There are WHERE clauses that do have a compact SEL_ARG-graph
|
||||
representation but get_mm_tree() and its callees will construct a
|
||||
graph of combinatorial size.
|
||||
Example:
|
||||
(keypart1 IN (1,2, ..., n1)) AND
|
||||
(keypart2 IN (1,2, ..., n2)) AND
|
||||
...
|
||||
(keypartN IN (1,2, ..., n3))
|
||||
|
||||
- There are WHERE clauses for which the minimal possible SEL_ARG graph
|
||||
representation will have combinatorial size.
|
||||
Example:
|
||||
By induction: Let's take any interval on some keypart in the middle:
|
||||
|
||||
kp15=c0
|
||||
|
||||
Then let's AND it with this interval 'structure' from preceding and
|
||||
following keyparts:
|
||||
|
||||
(kp14=c1 AND kp16=c3) OR keypart14=c2) (*)
|
||||
|
||||
We will obtain this SEL_ARG graph:
|
||||
|
||||
kp14 $ kp15 $ kp16
|
||||
$ $
|
||||
+---------+ $ +---------+ $ +---------+
|
||||
| kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 |
|
||||
+---------+ $ +---------+ $ +---------+
|
||||
| $ $
|
||||
+---------+ $ +---------+ $
|
||||
| kp14=c2 |--$-->| kp15=c0 | $
|
||||
+---------+ $ +---------+ $
|
||||
$ $
|
||||
|
||||
Note that we had to duplicate "kp15=c0" and there was no way to avoid
|
||||
that.
|
||||
The induction step: AND the obtained expression with another "wrapping"
|
||||
expression like (*).
|
||||
When the process ends because of the limit on max. number of keyparts
|
||||
we'll have:
|
||||
|
||||
WHERE clause length is O(3*#max_keyparts)
|
||||
SEL_ARG graph size is O(2^(#max_keyparts/2))
|
||||
|
||||
(it is also possible to construct a case where instead of 2 in 2^n we
|
||||
have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31
|
||||
nodes)
|
||||
|
||||
We avoid consuming too much memory by setting a limit on the number of
|
||||
SEL_ARG object we can construct during one range analysis invocation.
|
||||
*/
|
||||
|
||||
class SEL_ARG :public Sql_alloc
|
||||
{
|
||||
static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
|
||||
uint8 b_flag);
|
||||
public:
|
||||
uint8 min_flag,max_flag,maybe_flag;
|
||||
uint8 part; // Which key part
|
||||
uint8 maybe_null;
|
||||
/*
|
||||
The ordinal number the least significant component encountered in
|
||||
the ranges of the SEL_ARG tree (the first component has number 1)
|
||||
*/
|
||||
uint16 max_part_no;
|
||||
/*
|
||||
Number of children of this element in the RB-tree, plus 1 for this
|
||||
element itself.
|
||||
*/
|
||||
uint16 elements;
|
||||
/*
|
||||
Valid only for elements which are RB-tree roots: Number of times this
|
||||
RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
|
||||
SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
|
||||
*/
|
||||
ulong use_count;
|
||||
|
||||
Field *field;
|
||||
uchar *min_value,*max_value; // Pointer to range
|
||||
|
||||
/*
|
||||
eq_tree() requires that left == right == 0 if the type is MAYBE_KEY.
|
||||
*/
|
||||
SEL_ARG *left,*right; /* R-B tree children */
|
||||
SEL_ARG *next,*prev; /* Links for bi-directional interval list */
|
||||
SEL_ARG *parent; /* R-B tree parent */
|
||||
SEL_ARG *next_key_part;
|
||||
enum leaf_color { BLACK,RED } color;
|
||||
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
|
||||
|
||||
enum { MAX_SEL_ARGS = 16000 };
|
||||
|
||||
SEL_ARG() {}
|
||||
SEL_ARG(SEL_ARG &);
|
||||
SEL_ARG(Field *,const uchar *, const uchar *);
|
||||
SEL_ARG(Field *field, uint8 part, uchar *min_value, uchar *max_value,
|
||||
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
|
||||
SEL_ARG(enum Type type_arg)
|
||||
:min_flag(0), max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/,
|
||||
elements(1),use_count(1),left(0),right(0),
|
||||
next_key_part(0), color(BLACK), type(type_arg)
|
||||
{}
|
||||
/**
|
||||
returns true if a range predicate is equal. Use all_same()
|
||||
to check for equality of all the predicates on this keypart.
|
||||
*/
|
||||
inline bool is_same(const SEL_ARG *arg) const
|
||||
{
|
||||
if (type != arg->type || part != arg->part)
|
||||
return false;
|
||||
if (type != KEY_RANGE)
|
||||
return true;
|
||||
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
|
||||
}
|
||||
/**
|
||||
returns true if all the predicates in the keypart tree are equal
|
||||
*/
|
||||
bool all_same(const SEL_ARG *arg) const
|
||||
{
|
||||
if (type != arg->type || part != arg->part)
|
||||
return false;
|
||||
if (type != KEY_RANGE)
|
||||
return true;
|
||||
if (arg == this)
|
||||
return true;
|
||||
const SEL_ARG *cmp_arg= arg->first();
|
||||
const SEL_ARG *cur_arg= first();
|
||||
for (; cur_arg && cmp_arg && cur_arg->is_same(cmp_arg);
|
||||
cur_arg= cur_arg->next, cmp_arg= cmp_arg->next) ;
|
||||
if (cur_arg || cmp_arg)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
|
||||
inline void maybe_smaller() { maybe_flag=1; }
|
||||
/* Return true iff it's a single-point null interval */
|
||||
inline bool is_null_interval() { return maybe_null && max_value[0] == 1; }
|
||||
inline int cmp_min_to_min(const SEL_ARG* arg) const
|
||||
{
|
||||
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
|
||||
}
|
||||
inline int cmp_min_to_max(const SEL_ARG* arg) const
|
||||
{
|
||||
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
|
||||
}
|
||||
inline int cmp_max_to_max(const SEL_ARG* arg) const
|
||||
{
|
||||
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
|
||||
}
|
||||
inline int cmp_max_to_min(const SEL_ARG* arg) const
|
||||
{
|
||||
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
|
||||
}
|
||||
SEL_ARG *clone_and(THD *thd, SEL_ARG* arg)
|
||||
{ // Get overlapping range
|
||||
uchar *new_min,*new_max;
|
||||
uint8 flag_min,flag_max;
|
||||
if (cmp_min_to_min(arg) >= 0)
|
||||
{
|
||||
new_min=min_value; flag_min=min_flag;
|
||||
}
|
||||
else
|
||||
{
|
||||
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
|
||||
}
|
||||
if (cmp_max_to_max(arg) <= 0)
|
||||
{
|
||||
new_max=max_value; flag_max=max_flag;
|
||||
}
|
||||
else
|
||||
{
|
||||
new_max=arg->max_value; flag_max=arg->max_flag;
|
||||
}
|
||||
return new (thd->mem_root) SEL_ARG(field, part, new_min, new_max, flag_min,
|
||||
flag_max,
|
||||
MY_TEST(maybe_flag && arg->maybe_flag));
|
||||
}
|
||||
SEL_ARG *clone_first(SEL_ARG *arg)
|
||||
{ // min <= X < arg->min
|
||||
return new SEL_ARG(field,part, min_value, arg->min_value,
|
||||
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
|
||||
maybe_flag | arg->maybe_flag);
|
||||
}
|
||||
SEL_ARG *clone_last(SEL_ARG *arg)
|
||||
{ // min <= X <= key_max
|
||||
return new SEL_ARG(field, part, min_value, arg->max_value,
|
||||
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
|
||||
}
|
||||
SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);
|
||||
|
||||
bool copy_min(SEL_ARG* arg)
|
||||
{ // Get overlapping range
|
||||
if (cmp_min_to_min(arg) > 0)
|
||||
{
|
||||
min_value=arg->min_value; min_flag=arg->min_flag;
|
||||
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
||||
(NO_MAX_RANGE | NO_MIN_RANGE))
|
||||
return 1; // Full range
|
||||
}
|
||||
maybe_flag|=arg->maybe_flag;
|
||||
return 0;
|
||||
}
|
||||
bool copy_max(SEL_ARG* arg)
|
||||
{ // Get overlapping range
|
||||
if (cmp_max_to_max(arg) <= 0)
|
||||
{
|
||||
max_value=arg->max_value; max_flag=arg->max_flag;
|
||||
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
||||
(NO_MAX_RANGE | NO_MIN_RANGE))
|
||||
return 1; // Full range
|
||||
}
|
||||
maybe_flag|=arg->maybe_flag;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void copy_min_to_min(SEL_ARG *arg)
|
||||
{
|
||||
min_value=arg->min_value; min_flag=arg->min_flag;
|
||||
}
|
||||
void copy_min_to_max(SEL_ARG *arg)
|
||||
{
|
||||
max_value=arg->min_value;
|
||||
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
|
||||
}
|
||||
void copy_max_to_min(SEL_ARG *arg)
|
||||
{
|
||||
min_value=arg->max_value;
|
||||
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
|
||||
}
|
||||
/* returns a number of keypart values (0 or 1) appended to the key buffer */
|
||||
int store_min(uint length, uchar **min_key,uint min_key_flag)
|
||||
{
|
||||
/* "(kp1 > c1) AND (kp2 OP c2) AND ..." -> (kp1 > c1) */
|
||||
if ((min_flag & GEOM_FLAG) ||
|
||||
(!(min_flag & NO_MIN_RANGE) &&
|
||||
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
|
||||
{
|
||||
if (maybe_null && *min_value)
|
||||
{
|
||||
**min_key=1;
|
||||
bzero(*min_key+1,length-1);
|
||||
}
|
||||
else
|
||||
memcpy(*min_key,min_value,length);
|
||||
(*min_key)+= length;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
/* returns a number of keypart values (0 or 1) appended to the key buffer */
|
||||
int store_max(uint length, uchar **max_key, uint max_key_flag)
|
||||
{
|
||||
if (!(max_flag & NO_MAX_RANGE) &&
|
||||
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
|
||||
{
|
||||
if (maybe_null && *max_value)
|
||||
{
|
||||
**max_key=1;
|
||||
bzero(*max_key+1,length-1);
|
||||
}
|
||||
else
|
||||
memcpy(*max_key,max_value,length);
|
||||
(*max_key)+= length;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
Returns a number of keypart values appended to the key buffer
|
||||
for min key and max key. This function is used by both Range
|
||||
Analysis and Partition pruning. For partition pruning we have
|
||||
to ensure that we don't store also subpartition fields. Thus
|
||||
we have to stop at the last partition part and not step into
|
||||
the subpartition fields. For Range Analysis we set last_part
|
||||
to MAX_KEY which we should never reach.
|
||||
*/
|
||||
int store_min_key(KEY_PART *key,
|
||||
uchar **range_key,
|
||||
uint *range_key_flag,
|
||||
uint last_part)
|
||||
{
|
||||
SEL_ARG *key_tree= first();
|
||||
uint res= key_tree->store_min(key[key_tree->part].store_length,
|
||||
range_key, *range_key_flag);
|
||||
*range_key_flag|= key_tree->min_flag;
|
||||
if (key_tree->next_key_part &&
|
||||
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
|
||||
key_tree->part != last_part &&
|
||||
key_tree->next_key_part->part == key_tree->part+1 &&
|
||||
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
|
||||
res+= key_tree->next_key_part->store_min_key(key,
|
||||
range_key,
|
||||
range_key_flag,
|
||||
last_part);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* returns a number of keypart values appended to the key buffer */
|
||||
int store_max_key(KEY_PART *key,
|
||||
uchar **range_key,
|
||||
uint *range_key_flag,
|
||||
uint last_part)
|
||||
{
|
||||
SEL_ARG *key_tree= last();
|
||||
uint res=key_tree->store_max(key[key_tree->part].store_length,
|
||||
range_key, *range_key_flag);
|
||||
(*range_key_flag)|= key_tree->max_flag;
|
||||
if (key_tree->next_key_part &&
|
||||
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
|
||||
key_tree->part != last_part &&
|
||||
key_tree->next_key_part->part == key_tree->part+1 &&
|
||||
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
|
||||
res+= key_tree->next_key_part->store_max_key(key,
|
||||
range_key,
|
||||
range_key_flag,
|
||||
last_part);
|
||||
return res;
|
||||
}
|
||||
|
||||
SEL_ARG *insert(SEL_ARG *key);
|
||||
SEL_ARG *tree_delete(SEL_ARG *key);
|
||||
SEL_ARG *find_range(SEL_ARG *key);
|
||||
SEL_ARG *rb_insert(SEL_ARG *leaf);
|
||||
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
|
||||
#ifdef EXTRA_DEBUG
|
||||
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
|
||||
void test_use_count(SEL_ARG *root);
|
||||
#endif
|
||||
SEL_ARG *first();
|
||||
const SEL_ARG *first() const;
|
||||
SEL_ARG *last();
|
||||
void make_root();
|
||||
inline bool simple_key()
|
||||
{
|
||||
return !next_key_part && elements == 1;
|
||||
}
|
||||
void increment_use_count(long count)
|
||||
{
|
||||
if (next_key_part)
|
||||
{
|
||||
next_key_part->use_count+=count;
|
||||
count*= (next_key_part->use_count-count);
|
||||
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
|
||||
if (pos->next_key_part)
|
||||
pos->increment_use_count(count);
|
||||
}
|
||||
}
|
||||
void incr_refs()
|
||||
{
|
||||
increment_use_count(1);
|
||||
use_count++;
|
||||
}
|
||||
void incr_refs_all()
|
||||
{
|
||||
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
||||
{
|
||||
pos->increment_use_count(1);
|
||||
}
|
||||
use_count++;
|
||||
}
|
||||
void free_tree()
|
||||
{
|
||||
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
||||
if (pos->next_key_part)
|
||||
{
|
||||
pos->next_key_part->use_count--;
|
||||
pos->next_key_part->free_tree();
|
||||
}
|
||||
}
|
||||
|
||||
inline SEL_ARG **parent_ptr()
|
||||
{
|
||||
return parent->left == this ? &parent->left : &parent->right;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Check if this SEL_ARG object represents a single-point interval
|
||||
|
||||
SYNOPSIS
|
||||
is_singlepoint()
|
||||
|
||||
DESCRIPTION
|
||||
Check if this SEL_ARG object (not tree) represents a single-point
|
||||
interval, i.e. if it represents a "keypart = const" or
|
||||
"keypart IS NULL".
|
||||
|
||||
RETURN
|
||||
TRUE This SEL_ARG object represents a singlepoint interval
|
||||
FALSE Otherwise
|
||||
*/
|
||||
|
||||
bool is_singlepoint()
|
||||
{
|
||||
/*
|
||||
Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
|
||||
flags, and the same for right edge.
|
||||
*/
|
||||
if (min_flag || max_flag)
|
||||
return FALSE;
|
||||
uchar *min_val= min_value;
|
||||
uchar *max_val= max_value;
|
||||
|
||||
if (maybe_null)
|
||||
{
|
||||
/* First byte is a NULL value indicator */
|
||||
if (*min_val != *max_val)
|
||||
return FALSE;
|
||||
|
||||
if (*min_val)
|
||||
return TRUE; /* This "x IS NULL" */
|
||||
min_val++;
|
||||
max_val++;
|
||||
}
|
||||
return !field->key_cmp(min_val, max_val);
|
||||
}
|
||||
SEL_ARG *clone_tree(RANGE_OPT_PARAM *param);
|
||||
};
|
||||
|
||||
|
||||
class RANGE_OPT_PARAM
|
||||
{
|
||||
public:
|
||||
THD *thd; /* Current thread handle */
|
||||
TABLE *table; /* Table being analyzed */
|
||||
table_map prev_tables;
|
||||
table_map read_tables;
|
||||
table_map current_table; /* Bit of the table being analyzed */
|
||||
|
||||
/* Array of parts of all keys for which range analysis is performed */
|
||||
KEY_PART *key_parts;
|
||||
KEY_PART *key_parts_end;
|
||||
MEM_ROOT *mem_root; /* Memory that will be freed when range analysis completes */
|
||||
MEM_ROOT *old_root; /* Memory that will last until the query end */
|
||||
/*
|
||||
Number of indexes used in range analysis (In SEL_TREE::keys only first
|
||||
#keys elements are not empty)
|
||||
*/
|
||||
uint keys;
|
||||
|
||||
/*
|
||||
If true, the index descriptions describe real indexes (and it is ok to
|
||||
call field->optimize_range(real_keynr[...], ...).
|
||||
Otherwise index description describes fake indexes.
|
||||
*/
|
||||
bool using_real_indexes;
|
||||
|
||||
/*
|
||||
Aggressively remove "scans" that do not have conditions on first
|
||||
keyparts. Such scans are usable when doing partition pruning but not
|
||||
regular range optimization.
|
||||
*/
|
||||
bool remove_jump_scans;
|
||||
|
||||
/*
|
||||
TRUE <=> Range analyzer should remove parts of condition that are found
|
||||
to be always FALSE.
|
||||
*/
|
||||
bool remove_false_where_parts;
|
||||
|
||||
/*
|
||||
used_key_no -> table_key_no translation table. Only makes sense if
|
||||
using_real_indexes==TRUE
|
||||
*/
|
||||
uint real_keynr[MAX_KEY];
|
||||
|
||||
/*
|
||||
Used to store 'current key tuples', in both range analysis and
|
||||
partitioning (list) analysis
|
||||
*/
|
||||
uchar min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
|
||||
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
|
||||
|
||||
/* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */
|
||||
uint alloced_sel_args;
|
||||
|
||||
bool force_default_mrr;
|
||||
KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
|
||||
|
||||
bool statement_should_be_aborted() const
|
||||
{
|
||||
return
|
||||
thd->is_fatal_error ||
|
||||
thd->is_error() ||
|
||||
alloced_sel_args > SEL_ARG::MAX_SEL_ARGS;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class Explain_quick_select;
|
||||
/*
|
||||
A "MIN_TUPLE < tbl.key_tuple < MAX_TUPLE" interval.
|
||||
@ -401,7 +1011,6 @@ public:
|
||||
|
||||
struct st_qsel_param;
|
||||
class PARAM;
|
||||
class SEL_ARG;
|
||||
|
||||
|
||||
/*
|
||||
|
Reference in New Issue
Block a user