mirror of
https://github.com/MariaDB/server.git
synced 2025-07-29 05:21:33 +03:00
MWL#17: Table elimination
- Moved table elimination code to sql/opt_table_elimination.cc - Added comments .bzrignore: MWL#17: Table elimination - Moved table elimination code to sql/opt_table_elimination.cc libmysqld/Makefile.am: MWL#17: Table elimination - Moved table elimination code to sql/opt_table_elimination.cc sql/CMakeLists.txt: MWL#17: Table elimination - Moved table elimination code to sql/opt_table_elimination.cc sql/Makefile.am: MWL#17: Table elimination - Moved table elimination code to sql/opt_table_elimination.cc
This commit is contained in:
@ -42,11 +42,6 @@
|
||||
#define TMP_ENGINE_HTON myisam_hton
|
||||
#endif
|
||||
|
||||
#define FT_KEYPART (MAX_REF_PARTS+10)
|
||||
/* Values in optimize */
|
||||
#define KEY_OPTIMIZE_EXISTS 1
|
||||
#define KEY_OPTIMIZE_REF_OR_NULL 2
|
||||
|
||||
const char *join_type_str[]={ "UNKNOWN","system","const","eq_ref","ref",
|
||||
"MAYBE_REF","ALL","range","index","fulltext",
|
||||
"ref_or_null","unique_subquery","index_subquery",
|
||||
@ -65,7 +60,6 @@ static bool update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,
|
||||
table_map table_map, SELECT_LEX *select_lex,
|
||||
st_sargable_param **sargables);
|
||||
static int sort_keyuse(KEYUSE *a,KEYUSE *b);
|
||||
static void set_position(JOIN *join,uint index,JOIN_TAB *table,KEYUSE *key);
|
||||
static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
|
||||
table_map used_tables);
|
||||
static bool choose_plan(JOIN *join,table_map join_tables);
|
||||
@ -2386,10 +2380,13 @@ mysql_select(THD *thd, Item ***rref_pointer_array,
|
||||
}
|
||||
else
|
||||
{
|
||||
// psergey{
|
||||
/*
|
||||
When in EXPLAIN, delay deleting the joins so that they are still
|
||||
available when we're producing EXPLAIN EXTENDED warning text.
|
||||
*/
|
||||
if (select_options & SELECT_DESCRIBE)
|
||||
free_join= 0;
|
||||
// }psergey
|
||||
|
||||
if (!(join= new JOIN(thd, fields, select_options, result)))
|
||||
DBUG_RETURN(TRUE);
|
||||
thd_proc_info(thd, "init");
|
||||
@ -2477,383 +2474,6 @@ static ha_rows get_quick_record_count(THD *thd, SQL_SELECT *select,
|
||||
DBUG_RETURN(HA_POS_ERROR); /* This shouldn't happend */
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Table elimination code starts
|
||||
********************************************************************/
|
||||
typedef struct st_keyuse_w_needed_reg
|
||||
{
|
||||
KEYUSE *first;
|
||||
key_part_map second;
|
||||
|
||||
} Keyuse_w_needed_reg;
|
||||
|
||||
static
|
||||
bool has_eq_ref_access_candidate(TABLE *table, table_map can_refer_to_these)
|
||||
{
|
||||
KEYUSE *keyuse= table->reginfo.join_tab->keyuse;
|
||||
if (keyuse)
|
||||
{
|
||||
/*
|
||||
walk through all of the KEYUSE elements and
|
||||
- locate unique keys
|
||||
- check if we have eq_ref access for them
|
||||
TODO any other reqs?
|
||||
loops are constructed like in best_access_path
|
||||
*/
|
||||
while (keyuse->table == table)
|
||||
{
|
||||
uint key= keyuse->key;
|
||||
key_part_map bound_parts=0;
|
||||
uint n_unusable=0;
|
||||
bool ft_key= test(keyuse->keypart == FT_KEYPART);
|
||||
KEY *keyinfo= table->key_info + key;
|
||||
KEYUSE *key_start = keyuse;
|
||||
|
||||
do /* For each keypart and each way to read it */
|
||||
{
|
||||
if (keyuse->usable)
|
||||
{
|
||||
if(!(keyuse->used_tables & ~can_refer_to_these) &&
|
||||
!(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))
|
||||
{
|
||||
bound_parts |= keyuse->keypart_map;
|
||||
}
|
||||
}
|
||||
else
|
||||
n_unusable++;
|
||||
keyuse++;
|
||||
} while (keyuse->table == table && keyuse->key == key);
|
||||
|
||||
if (ft_key || ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY))
|
||||
!= HA_NOSAME))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (bound_parts == PREV_BITS(key_part_map, keyinfo->key_parts))
|
||||
return TRUE;
|
||||
/*
|
||||
Ok, usable keyuse elements didn't help us. Try making use of
|
||||
unusable KEYUSEs (psergey-todo: sane comments:)
|
||||
*/
|
||||
if (n_unusable && bound_parts)
|
||||
{
|
||||
/*
|
||||
Check if unusable KEYUSE elements cause all parts of key to be
|
||||
bound. An unusable keyuse element makes a key part bound when it
|
||||
represents the following:
|
||||
|
||||
keyXpartY=func(bound_columns, preceding_tables)
|
||||
|
||||
.
|
||||
*/
|
||||
Keyuse_w_needed_reg *uses;
|
||||
if (!(uses= (Keyuse_w_needed_reg*)my_alloca(sizeof(Keyuse_w_needed_reg)*n_unusable)))
|
||||
return FALSE;
|
||||
uint n_uses=0;
|
||||
for (KEYUSE *k= key_start; k!=keyuse; k++)
|
||||
{
|
||||
if (!k->usable && !(k->used_tables & ~can_refer_to_these))
|
||||
{
|
||||
//Walk k->val and check which key parts it depends on.
|
||||
Field_processor_info fp= {can_refer_to_these, table, k->key, 0};
|
||||
if (!k->val->walk(&Item::check_column_usage_processor, FALSE,
|
||||
(uchar*)&fp))
|
||||
{
|
||||
uses[n_uses].first= k;
|
||||
uses[n_uses].second= fp.needed_key_parts;
|
||||
n_uses++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Now compute transitive closure */
|
||||
uint n_bounded;
|
||||
do
|
||||
{
|
||||
n_bounded= 0;
|
||||
for (uint i=0; i< n_uses; i++)
|
||||
{
|
||||
/* needed_parts is covered by what is already bound*/
|
||||
if (!(uses[i].second & ~bound_parts))
|
||||
{
|
||||
bound_parts|= key_part_map(1) << uses[i].first->keypart;
|
||||
n_bounded++;
|
||||
}
|
||||
if (bound_parts == PREV_BITS(key_part_map, keyinfo->key_parts))
|
||||
return TRUE;
|
||||
}
|
||||
} while (n_bounded != 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
|
||||
static void mark_table_as_eliminated(JOIN *join, TABLE *table, uint *const_tbl_count,
|
||||
table_map *const_tables)
|
||||
{
|
||||
JOIN_TAB *tab= table->reginfo.join_tab;
|
||||
if (!(*const_tables & tab->table->map))
|
||||
{
|
||||
DBUG_PRINT("info", ("Eliminated table %s", table->alias));
|
||||
tab->type= JT_CONST;
|
||||
join->eliminated_tables |= table->map;
|
||||
*const_tables |= table->map;
|
||||
join->const_table_map|= table->map;
|
||||
set_position(join, (*const_tbl_count)++, tab, (KEYUSE*)0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Now on to traversal. There can be a situation like this:
|
||||
|
||||
FROM t1
|
||||
LEFT JOIN t2 ON cond(t1,t2)
|
||||
LEFT JOIN t3 ON cond(..., possibly-t2) // <--(*)
|
||||
LEFT JOIN t4 ON cond(..., possibly-t2)
|
||||
|
||||
Besides that, simplify_joins() may have created back references, so when
|
||||
we're e.g. looking at outer join (*) we need to look both forward and
|
||||
backward to check if there are any references in preceding/following
|
||||
outer joins'
|
||||
|
||||
TODO would it create only following-sibling references or
|
||||
preceding-sibling as well?
|
||||
And if not, should we rely on that?
|
||||
|
||||
*/
|
||||
|
||||
int
|
||||
eliminate_tables_for_join_list(JOIN *join, List<TABLE_LIST> *join_list,
|
||||
table_map used_tables_elsewhere,
|
||||
uint *const_tbl_count, table_map *const_tables)
|
||||
{
|
||||
List_iterator<TABLE_LIST> it(*join_list);
|
||||
table_map used_tables_on_right[MAX_TABLES]; // todo change to alloca
|
||||
table_map used_tables_on_left;
|
||||
TABLE_LIST *tbl;
|
||||
int i, n_tables;
|
||||
int eliminated=0;
|
||||
|
||||
/* Collect the reverse-bitmap-array */
|
||||
for (i=0; (tbl= it++); i++)
|
||||
{
|
||||
used_tables_on_right[i]= 0;
|
||||
if (tbl->on_expr)
|
||||
used_tables_on_right[i]= tbl->on_expr->used_tables();
|
||||
if (tbl->nested_join)
|
||||
used_tables_on_right[i]= tbl->nested_join->used_tables;
|
||||
}
|
||||
n_tables= i;
|
||||
|
||||
for (i= n_tables - 2; i > 0; i--)
|
||||
used_tables_on_right[i] |= used_tables_on_right[i+1];
|
||||
|
||||
it.rewind();
|
||||
|
||||
/* Walk through tables and join nests and see if we can eliminate them */
|
||||
used_tables_on_left= 0;
|
||||
i= 1;
|
||||
while ((tbl= it++))
|
||||
{
|
||||
table_map tables_used_outside= used_tables_on_left |
|
||||
used_tables_on_right[i] |
|
||||
used_tables_elsewhere;
|
||||
table_map cur_tables= 0;
|
||||
|
||||
if (tbl->nested_join)
|
||||
{
|
||||
DBUG_ASSERT(tbl->on_expr);
|
||||
/*
|
||||
There can be cases where table removal is applicable for tables
|
||||
within the outer join but not for the outer join itself. Ask to
|
||||
remove the children first.
|
||||
|
||||
TODO: NoHopelessEliminationAttempts: the below call can return
|
||||
information about whether it would make any sense to try removing
|
||||
this entire outer join nest.
|
||||
*/
|
||||
int eliminated_in_children=
|
||||
eliminate_tables_for_join_list(join, &tbl->nested_join->join_list,
|
||||
tables_used_outside,
|
||||
const_tbl_count, const_tables);
|
||||
tbl->nested_join->n_tables -=eliminated_in_children;
|
||||
cur_tables= tbl->nested_join->used_tables;
|
||||
if (!(cur_tables & tables_used_outside))
|
||||
{
|
||||
/*
|
||||
Check if all embedded tables together can produce at most one
|
||||
record combination. This is true when
|
||||
- each of them has one_match(outer-tables) property
|
||||
(this is a stronger condition than all of them together having
|
||||
this property but that's irrelevant here)
|
||||
- there are no outer joins among them
|
||||
(except for the case of outer join which has all inner tables
|
||||
to be constant and is guaranteed to produce only one record.
|
||||
that record will be null-complemented)
|
||||
*/
|
||||
bool one_match= TRUE;
|
||||
List_iterator<TABLE_LIST> it2(tbl->nested_join->join_list);
|
||||
TABLE_LIST *inner;
|
||||
while ((inner= it2++))
|
||||
{
|
||||
/*
|
||||
Bail out if we see an outer join (TODO: handle the above
|
||||
null-complemntated-rows-only case)
|
||||
*/
|
||||
if (inner->on_expr)
|
||||
{
|
||||
one_match= FALSE;
|
||||
break;
|
||||
}
|
||||
|
||||
if (inner->table && // <-- to be removed after NoHopelessEliminationAttempts
|
||||
!has_eq_ref_access_candidate(inner->table,
|
||||
~tbl->nested_join->used_tables))
|
||||
{
|
||||
one_match= FALSE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (one_match)
|
||||
{
|
||||
it2.rewind();
|
||||
while ((inner= it2++))
|
||||
{
|
||||
mark_table_as_eliminated(join, inner->table, const_tbl_count,
|
||||
const_tables);
|
||||
}
|
||||
eliminated += tbl->nested_join->join_list.elements;
|
||||
//psergey-todo: do we need to do anything about removing the join
|
||||
//nest?
|
||||
tbl->on_expr->walk(&Item::mark_as_eliminated_processor, FALSE, NULL);
|
||||
}
|
||||
else
|
||||
{
|
||||
eliminated += eliminated_in_children;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (tbl->on_expr)
|
||||
{
|
||||
cur_tables= tbl->on_expr->used_tables();
|
||||
/* Check and remove */
|
||||
if (!(tbl->table->map & tables_used_outside) &&
|
||||
has_eq_ref_access_candidate(tbl->table, (table_map)-1))
|
||||
{
|
||||
mark_table_as_eliminated(join, tbl->table, const_tbl_count,
|
||||
const_tables);
|
||||
tbl->on_expr->walk(&Item::mark_as_eliminated_processor, FALSE, NULL);
|
||||
eliminated += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Update bitmap of tables we've seen on the left */
|
||||
i++;
|
||||
used_tables_on_left |= cur_tables;
|
||||
}
|
||||
return eliminated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Perform table elimination based on outer join
|
||||
|
||||
SELECT * FROM t1 LEFT JOIN
|
||||
(t2 JOIN t3) ON t3.primary_key=t1.col AND
|
||||
t4.primary_key= t2.col
|
||||
|
||||
CRITERIA FOR REMOVING ONE OJ NEST
|
||||
we can't rely on sole presense of eq_refs. Because if we do, we'll miss
|
||||
things like this:
|
||||
|
||||
SELECT * FROM flights LEFT JOIN
|
||||
(pax as S1 JOIN pax as S2 ON S2.id=S1.spouse AND s1.id=s2.spouse)
|
||||
|
||||
(no-polygamy schema/query but there can be many couples on the flight)
|
||||
..
|
||||
|
||||
REMOVAL PROCESS
|
||||
We can remove an inner side of an outer join if it there is a warranty
|
||||
that it will produce not more than one record:
|
||||
|
||||
... t1 LEFT JOIN t2 ON (t2.unique_key = expr) ...
|
||||
|
||||
For nested outer joins:
|
||||
- The process naturally occurs bottom-up (in order to remove an
|
||||
outer-join we need to analyze its contents)
|
||||
- If we failed to remove an outer join nest, it makes no sense to
|
||||
try removing its ancestors, as the
|
||||
ot LEFT JOIN it ON cond
|
||||
pair may possibly produce two records (one record via match and
|
||||
another one as access-method record).
|
||||
|
||||
Q: If we haven't removed an OUTER JOIN, does it make sense to attempt
|
||||
removing its ancestors?
|
||||
A: No as the innermost outer join will produce two records => no ancestor
|
||||
outer join nest will be able to provide the max_fanout==1 guarantee.
|
||||
|
||||
psergey-todo: .
|
||||
*/
|
||||
|
||||
static void eliminate_tables(JOIN *join, uint *const_tbl_count, table_map *const_tables)
|
||||
{
|
||||
Item *item;
|
||||
table_map used_tables;
|
||||
DBUG_ENTER("eliminate_tables");
|
||||
|
||||
DBUG_ASSERT(join->eliminated_tables == 0);
|
||||
|
||||
/* MWL#17 is only about outer join elimination, so: */
|
||||
if (!join->outer_join)
|
||||
DBUG_VOID_RETURN;
|
||||
|
||||
/* Find the tables that are referred to from WHERE/HAVING */
|
||||
used_tables= (join->conds? join->conds->used_tables() : 0) |
|
||||
(join->having? join->having->used_tables() : 0);
|
||||
|
||||
/* Add tables referred to from the select list */
|
||||
List_iterator<Item> it(join->fields_list);
|
||||
while ((item= it++))
|
||||
used_tables |= item->used_tables();
|
||||
|
||||
/* Add tables referred to from ORDER BY and GROUP BY lists */
|
||||
ORDER *all_lists[]= { join->order, join->group_list};
|
||||
for (int i=0; i < 2; i++)
|
||||
{
|
||||
for (ORDER *cur_list= all_lists[i]; cur_list; cur_list= cur_list->next)
|
||||
used_tables |= (*(cur_list->item))->used_tables();
|
||||
}
|
||||
|
||||
THD* thd= join->thd;
|
||||
if (join->select_lex == &thd->lex->select_lex)
|
||||
{
|
||||
/* Multi-table UPDATE and DELETE: don't eliminate the tables we modify: */
|
||||
used_tables |= thd->table_map_for_update;
|
||||
|
||||
/* Multi-table UPDATE: don't eliminate tables referred from SET statement */
|
||||
if (thd->lex->sql_command == SQLCOM_UPDATE_MULTI)
|
||||
{
|
||||
List_iterator<Item> it2(thd->lex->value_list);
|
||||
while ((item= it2++))
|
||||
used_tables |= item->used_tables();
|
||||
}
|
||||
}
|
||||
|
||||
if (((1 << join->tables) - 1) & ~used_tables)
|
||||
{
|
||||
/* There are some time tables that we probably could eliminate */
|
||||
eliminate_tables_for_join_list(join, join->join_list, used_tables,
|
||||
const_tbl_count, const_tables);
|
||||
}
|
||||
DBUG_VOID_RETURN;
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Table elimination code ends
|
||||
********************************************************************/
|
||||
|
||||
/*
|
||||
This structure is used to collect info on potentially sargable
|
||||
@ -3219,10 +2839,6 @@ make_join_statistics(JOIN *join, TABLE_LIST *tables_arg, COND *conds,
|
||||
}
|
||||
}
|
||||
|
||||
//psergey-todo: table elimination
|
||||
//eliminate_tables(join, &const_count, &found_const_table_map);
|
||||
//:psergey-todo
|
||||
|
||||
/* Calc how many (possible) matched records in each table */
|
||||
|
||||
for (s=stat ; s < stat_end ; s++)
|
||||
@ -3354,7 +2970,7 @@ typedef struct key_field_t {
|
||||
*/
|
||||
bool null_rejecting;
|
||||
bool *cond_guard; /* See KEYUSE::cond_guard */
|
||||
bool usable;
|
||||
bool usable; /* See KEYUSE::usable */
|
||||
} KEY_FIELD;
|
||||
|
||||
|
||||
@ -4428,8 +4044,7 @@ add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab)
|
||||
|
||||
/** Save const tables first as used tables. */
|
||||
|
||||
static void
|
||||
set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key)
|
||||
void set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key)
|
||||
{
|
||||
join->positions[idx].table= table;
|
||||
join->positions[idx].key=key;
|
||||
@ -17021,7 +16636,6 @@ bool mysql_explain_union(THD *thd, SELECT_LEX_UNIT *unit, select_result *result)
|
||||
unit->fake_select_lex->options|= SELECT_DESCRIBE;
|
||||
if (!(res= unit->prepare(thd, result, SELECT_NO_UNLOCK | SELECT_DESCRIBE)))
|
||||
res= unit->exec();
|
||||
//psergey-move: res|= unit->cleanup();
|
||||
}
|
||||
else
|
||||
{
|
||||
|
Reference in New Issue
Block a user